Neutral Atom Quantum Computing

Current group
Laura Zundel
Cheng Tang
Aishwarya Kumar
Josh Wilson
Teng Zhang
Tsung-Yao Wu

Neel Malvania
Felipe Giraldo
Fan Zhou
David Weiss
Penn State
Supported by the NSF (and DARPA)

Outline

I: Basic Atomic Physics Technology A. Atomic qubit states
B. Light-atom interactions
C. Atom cooling and trapping
D. Ultracold collisions
E. Optical lattices
II. Neutral Atom Quantum Computing state preparation, state measurement, single qubit gates, two qubit gates
10^{6} atomic qubits in < $5 \mathrm{~mm}^{2}$ or $<0.5 \mathrm{~mm}^{3}$
All atoms of a species are identical
Can be very isolated from the environment
Very good preparation and measurement
Warning: There are many $Q C$-relevant neutral atom experimental methods and experiments that I will not discuss.

I. A

Atoms have a lot of internal states

Rydberg atoms

Recall for hydrogen $E_{n}=-\frac{m}{2 \hbar^{2}}\left(\frac{Z e^{2}}{4 \pi \varepsilon_{o}}\right)^{2} \frac{1}{n^{2}}, r \propto n^{2}$ and $\Gamma_{o} \propto n^{3}$
For single electron excitations close enough to dissociation, all atoms have these dependences on n.

Atoms in Rydberg states can have large electric dipole interactions with similarly excited atoms, $\propto n^{4} / r^{3}$

This long range interaction can also be used for entanglement
I.B

Light-Atom Interactions

Electric dipole transitions:

$$
\begin{aligned}
H_{E D} & =-e \sum_{i=1}^{Z} \boldsymbol{r}_{i} \bullet E_{o} \boldsymbol{\varepsilon} \cos (\omega t) \\
& =-\boldsymbol{p}_{d} \bullet E_{o} \boldsymbol{\varepsilon} \cos (\omega t)
\end{aligned}
$$

Magnetic dipole transitions: $\quad H_{M D}=-\frac{\mu_{B}}{\hbar}(\boldsymbol{L}+2 \boldsymbol{S}) \bullet \boldsymbol{B} \cos (\omega t)$ The Rabi frequency: $\Omega \equiv \frac{\langle e| H_{\text {int }}|g\rangle}{\hbar}$
Two-level system calculations
\rightarrow The Bloch equations

$$
\boldsymbol{\rho} \equiv u \hat{1}+v \hat{2}+w \hat{3}
$$

$u=$ the in phase part of the atomic coherence
$v=$ the out of phase part of the atomic coherence
$w=$ the population inversion, $\rho_{e e}-\rho_{g g}=P_{e}-P_{g}$

$$
\Omega \equiv \Omega \hat{1}-\delta \hat{3}
$$

$$
\delta \equiv \omega-\omega_{o}
$$

, the detuning

Optical Bloch Equations with Dissipation

Coupling to the vacuum (spontaneous emission) leads to steady state solutions. $\Gamma=$ the spontaneous emission rate
$s \equiv \frac{\left(\frac{\Omega}{2}\right)^{2}}{\delta^{2}+\left(\frac{\Gamma}{2}\right)^{2}} \equiv \frac{I}{I_{s}} \frac{1}{1+\left(\frac{2 \delta}{\Gamma}\right)^{2}} \quad \begin{aligned} & \text { saturation } \\ & \text { parameter }\end{aligned}$

$$
u_{s t}=\frac{2 \delta}{\Omega}\left(\frac{s}{1+s}\right) ; \quad v_{s t}=\frac{\Gamma}{\Omega}\left(\frac{s}{1+s}\right) ; \quad P_{e, s t}=\frac{1}{2}\left(\frac{s}{1+s}\right)
$$

For $\delta=0$, the response is 90° out of phase with the driving field.
For $\delta \gg \Gamma$, the response is in phase and $\Gamma_{\text {scat }}=\Gamma \mathrm{P}_{e, s t} \ll \Gamma$.
For $\delta \ll \Gamma$, the response is 180° out of phase and $\Gamma_{\text {scat }} \ll \Gamma$.

Mechanical Force of Light

atom's com momentum

Ehrenfest's Thm:

$$
\langle\boldsymbol{F}\rangle=\frac{d\langle\boldsymbol{p}\rangle}{d t}=-\left\langle\frac{\partial H_{\mathrm{int}}}{\partial r}\right\rangle=\left\langle\boldsymbol{p}_{d} \bullet \nabla E\right\rangle
$$

$\boldsymbol{E}=E_{o} \boldsymbol{\varepsilon} \cos (\omega t+\phi(r))$

$$
\boldsymbol{p}_{d} \equiv\langle e \boldsymbol{r}\rangle=e \boldsymbol{r}_{g e}[u \cos (\omega t)-v \sin (\omega t)]
$$

averaging over an optical cycle, and taking steady state values

$$
\boldsymbol{F}=\frac{e r_{g e}}{2}\left[u_{s t} \nabla \mathrm{E}_{o}+v_{s t} \nabla \phi\right]
$$

the scattering force

The Scattering Force

$\boldsymbol{F}_{s c a t}=\frac{e r_{g e}}{2} v_{s t} \nabla \phi$
For a traveling wave, $\boldsymbol{E}=E_{o} \boldsymbol{\varepsilon} \cos (\omega t-\boldsymbol{k} \bullet \boldsymbol{r})$

$$
\boldsymbol{F}_{\text {scat }}=P_{e, s t} \Gamma \hbar \boldsymbol{k}
$$

It's the only net force right on resonance.
before
man $>$
during after
\longleftrightarrow

For $s \ll 1$ it's a single two-photon process.

The Optical Dipole Force

$$
F_{d i p}=\frac{e r_{g e}}{2} u_{s t} \nabla \mathrm{E}_{o}
$$

For $\delta \gg \Gamma, \quad u_{s t} \approx \frac{\Omega}{2 \delta}$ and $\boldsymbol{F}_{d i p}=\frac{\Omega}{2 \delta} \nabla \Omega$.

$$
\boldsymbol{F}_{d i p}=-\nabla U_{A C}
$$

in-phase part
where the AC Stark shift

$$
U_{A C}=\left\langle-\dot{p}_{d} \bullet E\right\rangle=\frac{\hbar \Omega^{2}}{4 \delta} \propto I
$$

$\delta>0 \rightarrow$ atoms attracted to light
$\delta<0 \rightarrow$ atoms repelled from light
The dipole force is conservative. Far from resonance that's all there is. If you know $I(r)$ you know the shape of the trap

Detecting Atoms

Fluorescence on or near resonance high and low high and low \longrightarrow intensity variants.

Absorption on resonance

Dispersive far from resonance

All these methods can be hyperfine state sensitive.
One can also ionize atoms and count them. The detection efficiency is then $<\sim 90 \%$, not good for Q.C.

I.C

Laser Cooling

Doppler Cooling

$\boldsymbol{F}_{\text {cool }}=\boldsymbol{F}_{\text {scat }+}+\boldsymbol{F}_{\text {scat }-}$
MOMN \rightarrow

Lab frame

$\boldsymbol{F}_{\text {cool }}=4 \hbar k^{2} \frac{I}{I_{s}} \frac{\frac{2 \delta}{\Gamma}}{\left[1+\left(\frac{2 \delta}{\Gamma}\right)^{2}\right]^{2}} \mathrm{v}=-\alpha \mathrm{v}$
Momentum diffusion

$$
\begin{aligned}
& D_{p}=\frac{d\left(p^{2}\right)}{2 d t} \\
& =\frac{2(\hbar k)^{2}}{2} \Gamma_{s c}
\end{aligned}
$$

Temperature $T=\frac{D_{p}}{\alpha}$

$$
=\frac{\hbar \Gamma}{4} \frac{\left(1+\left(\frac{2 \delta}{\Gamma}\right)^{2}\right)}{\frac{2 \delta}{\Gamma}}
$$

Optical Molasses

$$
T_{\min }=\frac{\hbar \Gamma}{2}
$$

Atom's frame

Polarization Gradient Cooling

Uses both $F_{\text {dip }}$ and $F_{\text {scat }}$.

Requirements

1. Atoms optically pump to the most ac Stark shifted state
2. There are polarization gradients.

There are 2 types of $P G s$, helicity and orientation. \uparrow

Eg., the polarization must change in a 3D standing wave

Atoms move away from their optically pumped state

They lose kinetic energy climbing potential hills

They optically pump to a new lowest state.

$T \sim 5(\text { 㑔 })^{2} / 2 m$
a few μK

The Magneto-Optic Trap

3D optical molasses for cooling plus 3D magnetic field gradients for trapping

spherical quadrupole coils

$$
\boldsymbol{F}=-\alpha \boldsymbol{v}-\boldsymbol{\kappa} \boldsymbol{r} \quad \kappa=\mu_{B} B^{\prime} \alpha / \hbar k
$$

Load the MOT from a slowed beam, or using the low velocity thermal tails of vapor cell.
It is a dissipative trap that dramatically increases the phase space density. Can collect up to $\sim 10^{10}$ atoms.

Dark State Laser Cooling

The "recoil limit" is not a limit.

Excitation probability

The limits to laser cooling are practical, not fundamental (eg., photon rescattering, imperfectly dark states)

Examples: VSCPT, Raman cooling, sideband cooling, Raman sideband cooling, projection cooling.

Laser cooling can initialize atomic qubits

Kerman et al. PRL 84439 (2000) Han,Wolf,Oliver,DePue,DSW. PRL 85724 (2000)

3D Raman

Sideband Cooling

1. A Raman pulse transfers atoms from $v \rightarrow v-1$.
2. Optical pumping returns the atoms to 4,4 state; v tends to stay the same.
3. $\omega_{x} \neq \omega_{y} \neq \omega_{z}$, so dark states become light 4. repeat

Evaporative Cooling

Far off-resonance dipole trap

Magnetic trap
(Ioffe-Prichard, TOP,...)
-Collisions eject highest energy atoms from trap

- Collisions rethermalize gas
-Trap depth lowered for forced evaporative cooling

Evaporative Cooling Data

BEC

1 s
1.5 s
2.0 s

Evaporation times (ranges from 1 to 60 s)
3.5×10^{5} BEC atoms every 3 s Bosons:
${ }^{87,85} \mathrm{Rb},{ }^{23} \mathrm{Na}, \mathrm{Li}^{133} \mathrm{Cs}, \mathrm{H},{ }^{39} \mathrm{~K},{ }^{41} \mathrm{~K},{ }^{4} \mathrm{He} *,{ }^{17 x} \mathrm{Yb},{ }^{52} \mathrm{Cr},{ }^{164} \mathrm{Dy},{ }^{84,86} \mathrm{Sr}$
Fermions: ${ }^{40} \mathrm{~K}, 6 \mathrm{Li},{ }^{173 \mathrm{Yb}},{ }^{87} \mathrm{Sr}$ Many others have been laser cooled

Quantum Degenerate Gases

The distribution of particles in eigenstates depends on F .

$$
f(\varepsilon)=\frac{1}{e^{(\varepsilon-\mu) / k_{B} T} \pm 1} \quad P(\varepsilon)=f(\varepsilon) g(\varepsilon)
$$

$$
\begin{aligned}
N & =\int_{0}^{\infty} g(\varepsilon) f(\varepsilon, \mu, T) d \varepsilon \\
U & =\int_{0}^{\infty} \varepsilon g(\varepsilon) f(\varepsilon, \mu, T) d \varepsilon
\end{aligned}
$$

The particle number and the total energy are conserved, and N and U then determine the chemical potential, μ, and T

Bose Einstein Condensation

For bosons below $T_{c} \Rightarrow$ macroscopic occupation of single quantum state

Degenerate Fermi gases

For fermions below $T_{F} \Rightarrow$ atoms start to fill up states below the Fermi energy

I.D
 Ultra-cold Collisions

They are not like hot collisions.
Intermolecular potential

Cold collisions depend on the long range behavior.

The Mean Field

S-wave interactions can be accounted for with the Huang pseudo-potential

$$
V(r)=\frac{4 \pi \hbar^{2}}{m} a \delta^{3}(\vec{r})
$$

-Long range behavior correct $R \propto 1-a / r$
-Enforces boundary condition $\Psi(r=a)=0$

This leads to the Gross-Pitaevskii equation (non-linear S.E.)

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\vec{r})+\frac{4 \pi \hbar^{2}}{m} a|\Psi|^{2}\right] \Psi=E \Psi=\mu \Psi \quad \psi=\frac{1}{\sqrt{N}} \phi_{0}
$$

The effects of collisions are taken into account by the mean field term. There is nothing irreversible about it! As long as ψ is well known, collisions can be used for entanglement.

I.E

Optical Lattices

Calculable, versatile atom traps

$U_{A C} \propto$ Intensity

Far from resonance, no light scattering

1D:

quantum computing

Optical Lattice options

If all beam pairs have different

 frequencies, they do not mutually interfere. Otherwise they do.They can be m_{F} state-independent if all the light looks linearly polarized, or else the lattice depends on the m_{F} state.

They symmetry can be triangular, square or quasi-crystalline.
The lattice spacing can be adjusted by changing beam angles.
Double-well lattices can be produced.

Collapse and Revival

Prepare atoms in a

$\begin{array}{l}\text { superposition of number } \\ \text { states at each lattice site }\end{array} \quad\|\alpha\rangle(t)=\mathrm{e}^{-\|\alpha\|^{2} / 2} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}} \mathrm{e}^{-\frac{1}{2} U n n(n-1) t / h}\|n\rangle$

Bloch

These collisions are coherent

Bose-Hubbard Hamiltonian

Expanding the field operator in the Wannier basis of localized wave functions on each lattice site, yields:

$$
\hat{\psi}(\boldsymbol{x})=\sum_{i} \hat{a}_{i} w\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)
$$

Bose-Hubbard Hamiltonian

$$
H=-J \sum_{\langle i, j\rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\sum_{i} \varepsilon_{i} \hat{n}_{i}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

On-site interaction matrix
Tunneling matrix element element

$$
U=\frac{4 \pi \hbar^{2} a}{m} \int d^{3} x|w(\boldsymbol{x})|^{4}
$$

M.P.A. Fisher et al., PRB 40, 546 (1989); D. Jaksch et al., PRL 81, 3108 (1998)

Superfluid Limit

$$
H=-J \sum_{i, j} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

Atoms are delocalized over the entire lattice!
Macroscopic wave function describes this state very well.

$$
\left|\Psi_{S F}\right\rangle \propto\left(\sum_{i=1}^{M} \hat{a}_{i}^{\dagger}\right)^{N}|0\rangle
$$

$$
\left\langle\hat{a}_{i}\right\rangle_{i} \neq 0
$$

Poissonian atom number distribution per lattice site

Mott-Insulator Limit

$$
H=-J \sum_{i, j} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

Atoms are completely localized to lattice sites!

$$
\left|\Psi_{\text {Mott }}\right\rangle \propto \prod_{i=1}^{M}\left(\hat{a}_{i}^{\dagger}\right)^{n}|0\rangle
$$

$$
\left\langle\hat{a}_{i}\right\rangle_{i}=0
$$

Fock states with a vanishing atom number fluctuation are formed.

Superfluid - Mott-Insulator Phase Diagram

Jaksch et al. PRL 81, 3108 (1998)

For an inhomogeneous system an effective local chemical potential can be introduced

One can imagine initializing an optical lattice quantum computer in this way. (although it's hard to correct imperfections)

A Fermi gas microscope

image from the Greiner group

Interaction U / t

A Bose gas microscope image from the Bloch group

The tunneling that drives the SF-MI transition makes it hard to isolate qubits

II. 3D Optical Lattice with Large Spacing (Penn State)

Our basic approach: start with many nearby qubits \rightarrow demonstrate gates \rightarrow execute them in parallel.

Blue-detuned: atoms trapped at intensity minima
$\theta=10^{\circ}$

balanced lattice beam paths adjustable lattice spacing effectively linear polarization everywhere

Loading the Lattice

Fused silica vacuum cell with good optical access from 6 sides Load a small magneto-optic trap (MOT) with cesium atoms Turn on the 3D lattice around atoms in MOT

Cooling Single Atoms in a 3D Optical Lattice

Load an average of 6 atoms per site in the lattice

Before polarization gradient cooling

After polarization gradient cooling
Losses occur in pairs due to light-assisted collisions

A random half of the lattice sites are occupied by a single atom

Imaging multiple planes

~250 atoms in

$t=0 \mathrm{~s}$
$t=3 \mathrm{~s}$

Image the cooling light
$\mathrm{k}_{\mathrm{B}} \mathrm{T} \ll \mathrm{U}_{\text {lat }}$
Linear gray scale: no image processing

Nelson, Li \& DSW, Nature Physics 3, 556 (2007).

Projection sideband cooling

 233001 (2009)Főrster et al., PRL 103,

Drive vibrational state changing transitions with microwave pulses

Use adiabatic fast passage for robustness. Cycle through each direction.
Fewest possible optical pumping steps.

Especially useful for weak Lamb-Dicke limit

3D projection cooling results

76% of the atoms are in the 3D vibrational ground state ($\sim 200 \mathrm{nK}$) X. Li, T. Corcovilos, Y. Wang, and DSW, PRL 108, 103001 (Recently, 87\%.)

Long coherence times

Adiabatic rapid passage pulse transfer to clock states

Spin echo spectroscopy between clock states ($\pi / 2-\pi-\pi / 2$)

T 1 times exceed 7 s (now ~20 s!)

Vacuum lifetimes exceed 80 s

Single site addressing

Theory Proposal

Penn State, 2004 JQI, 2007

Coherent addressing of a single <2\% filled plane

日

Arizona, 2013

State-flipping in 1D

Bonn, 2004
without neighboring quantum information

Wisconsin, 2015

State-flipping in 2D

Munich, 2011
Coherent addressing Universal targeted gate without affecting nearby quantum information

Penn State, 2015, 2016

Single site addressing in a 3D lattice

DSW,Vala, Thapliyal,Myrgren, Vazirani, Whaley, PRA 70, 040302 (2004); Weitenberg et al., Nature 471, 319 (2011); Xia, et al. PRL 114, 100503 (2015); Y. Wang, X. Zhang, T. Corcovilos, A. Kumar \& DSW. PRL. 115, 043003 (2015)

■■■■■■■■■ா!
Access atoms in a 125 site volume

Addressing spectroscopy

$\frac{\text { MEMS beam ste }}{\text { capability }}$

(a) 635 nm

- Full addressability to 25 sites in a plane
$\bullet<5$ s redirection time

All atoms in a plane, average pictures

from ~20 implementations

State changing atoms

 at single sites

4

Arbitrary single qubit
 gates demonstrated: DSW. PRL. 115, 043003 (2015)

targeted phase shifts (much

 better)
Y. Wang, A. Kumar, T-Y Wu, \& DSW.
arXiv:1601.03639 (2016), submitted

The phase gate structure

 $\begin{aligned} & \begin{array}{l}\text { Phase of } \\ \text { target } \\ \text { site }\end{array}\end{aligned} \frac{\Omega^{2} t}{2(\delta-k f)}-\frac{\Omega^{2} t}{2(\delta-f)}+\frac{\Omega^{2} t}{2 \delta}-\frac{\Omega^{2} t}{2(\delta-f)}$

For target sites, the phase shift is only second order sensitive to the ac Stark shift of the addressing light, and hence only fourth order sensitive to alignment fluctuations.

Fidelity depends mostly on microwaves Detuning (kHz)

Gates at 48 randomly chosen sites

$$
Z(\pi / 2) \text { gate }
$$

error per gate (EPG):

$$
\mathcal{E}=13(7) \times 10^{-4}
$$

an average of 20 qubits experience the phase gate during each
implementation
Phase

Generating a universal set of gates

Rotations about the X and Y axes can be implemented by sandwiching a targeted phase gate between global microwaves $\pi / 2$ pulses

Global
rotations

Quantum gates in any pattern

Addressing Robustness

Randomized Benchmarking

E. Knill et al. Phys. Rev. A, 77(1). 2008

Lattice compacting

Focused beam \& microwaves gives site-selective state change

Rotating polarizations gives stateselective translations

$$
\sigma^{+}+\sigma^{-}
$$

$$
\sigma^{+}
$$

$$
\overline{-1} \overline{0} \overline{+1} \quad \overline{-1} \overline{0} \overline{+1} \quad-1 \quad \overline{-1} \quad \bar{a} \quad \bar{a}
$$

In 3D, compact N atoms in $<4 \mathrm{~N}^{1 / 3}$ steps. ~50 ms for 125 sites

Can check for and fix errors

Global motion step

No more averaged pictures

Before

After

Shift the center plane atoms all the way to the left

Before

Fill the center plane

Before

Other atom sorting in 1D and 2D Endres, et al., Science 354, 1024(2016); Barredo, Léséleuc, Lienhard, Lahaye, Browaeys, Science 354, 1021 (2016).

We are working on operational fidelity, then complete 3D sorting

Atom Sorting

Harvard/MIT: 1D: array of tweezers from an AOM, eliminate empty traps and shift traps by shifting RF frequencies.

Palisseau: 2D: use a moving optical tweezer to fill a stationary atom arrray

Rydberg entanglement

Use crossed beams and a two-photon transition to a high Rydberg state.

In 3D each atom has 26 pretty near neighbors
time: as small as 100 ns
Additional 1-qubit gates makes it a C-Not

Experimental Rydberg Gates

Maller, Lichtman Xia, Sun, Piotrowicz, Carr, Isenhower, Saffman, Phys. Rev. A 92022336 (2015; Wilk, Gaëtan, Evellin, Wolters, Miroshnychenko, Grangier, Browaeys, Phys. Rev. Lett. 104010502 (2010); Jau, Hankin, Keating, Deutsch, Biedermann, Nat. Phys. 1271 (2016);

Controlled Collisions

Collisional Quantum Gate

D. Jaksch et al., PRL 82,1975 (1999)

Input state	Final state
$\|0\rangle\|0\rangle$	$\|0\rangle\|0\rangle$
$\|0\rangle\|1\rangle$	$\|0\rangle\|1\rangle$
$\|1\rangle\|0\rangle$	$\|1\rangle\|0\rangle \cdot e^{i \phi}$
$\|1\rangle\|1\rangle$	$\|1\rangle\|1\rangle$

This sort of gate is very demanding on atom temperature

Work at JILA (Regal) with two optical tweezers.

Conclusion

There are a lot of ways to manipulate the internal and external states of atoms.

$$
10^{6} \text { atomic qubits in }<5 \mathrm{~mm}^{2} \text { or }<0.5 \mathrm{~mm}^{3}
$$

There has been significant progress in fidelity improvement and scaling up to many usable qubits in the same system.
atom arrays: tweezers, lattices
single qubit gates: stimulated Raman, phase
two qubit gates: Rydberg, collisional
The next steps will be higher fidelity two-qubit gates and introduction of error correction.

