2019 NSF/DOE/AFOSR Quantum Science Summer School June 6, 2019

QS³ 2019 Question Session 1

Joe Checkelsky (MIT), Jun Zhu (PSU), Kyle Shen (Cornell)

Test of Response System

Question 1

Does this response system work correctly?

- A. Yes
- B. No

Test of Response System

Question 1

Does this response system work correctly?

A. Yes Yes this works

Question 2

Consider the "RSJ" model of a Josephson junction. Which statements regarding the effective resistance "R" are **TRUE**?

- 1. R is related to the normal state resistance of the junction
- 1. R is related to the resistance of the normal state contacts
- 1. The larger R is, the smaller the damping term in the RSJ model
- 1. The Josephson plasma frequency is strongly dependent on R

- A) 1 and 3
- B) 2 and 3
- C) 1, 2, and 3
- D) 1, 3, and 4
- E) All of the above

Question 2

Consider the "RSJ" model of a Josephson junction. Which statements regarding the effective resistance "R" are **TRUE**?

- 1. R is related to the normal state resistance of the junction
- 1. R is related to the resistance of the normal state contacts
- 1. The larger R is, the smaller the damping term in the RSJ model
- 1. The Josephson plasma frequency is strongly dependent on R

- A) 1 and 3
- B) 2 and 3
- C) 1, 2, and 3
- D) 1, 3, and 4
- E) All of the above

Question 3

A Josephson junction can be formed between two superconductors and one of the following materials:

- 1. Insulator
- 2. Metal
- 3. A different superconductor
- 4. Topological Insulator

- A) 1 only
- B) 2 only
- C) 1 and 2
- D) 1, 2, and 3
- E) All of the above

Question 3

A Josephson junction can be formed between two superconductors and one of the following materials:

- 1. Insulator
- 2. Metal
- 3. A different superconductor
- 4. Topological Insulator

- A) 1 only
- B) 2 only
- C) 1 and 2
- D) 1, 2, and 3
- E) All of the above

Question 4

When tuning the flux through a Josephson junction and examining the current phase relation, you may learn about

- The spatial distribution of the supercurrent
- 2. The pairing symmetry of an unknown superconductor
- 3. A 4 π periodicity may be evidence of Majorana zero mode

- A) 1 only
- B) 1 and 2
- C) 2 and 3
- D) All of the above

Question 4

When tuning the flux through a Josephson junction and examining the current phase relation, you may learn about

- 1. The spatial distribution of the supercurrent
- 2. The pairing symmetry of an unknown superconductor
- 3. A 4π periodicity may be evidence of Majorana zero mode

- A) 1 only
- B) 1 and 2
- C) 2 and 3
- D) All of the above

Josephson Junctions: Unconventional Superconductors

Question 5

Consider the following junctions between either a d-wave superconductor (i) and an s-wave SC (ii) into a conventional SC (blue). What would the critical current vs. flux characteristics look like?

E) None of the above

Josephson Junctions: Unconventional Superconductors

Question 5

Consider the following junctions between either a *d*-wave superconductor (i) and an s-wave SC (ii) into a conventional SC (blue). What would the critical current vs. flux characteristics look like?

E) None of the above

Majorana I

Question 6

Majorana fermions are

- 2. Charge neutral
- 3.Emergent states of a topological superconductor pinned at zero energy
- 4.Non-Abelian anyons

A) 1

B) 1, 2 and 3

C) 1, 2 and 4

D) 1, 2, 3 and 4

Majorana I

Question 6

Majorana fermions are

- 2. Charge neutral
- 3.Emergent states of a topological superconductor pinned at zero energy
- 4.Non-Abelian anyons

A) 1

B) 1, 2 and 3

C) 1, 2 and 4

D) 1, 2, 3 and 4

Majorana II

Question 7

When you braid two Majorana fermions, the wave function acquires a

- 1. "+" sign because there are two of them
- 2."-" sign because they are fermions
- 3. A phase that is expressed in exp (i θ), θ can be anything
- 4. A new quantum mechanical state at the same energy
- 5. A new quantum mechanical state with a slightly different energy

- A) 1
- B) 2
- **C**) 3
- D) 4
- E) 5

Majorana II

Question 7

When you braid two Majorana fermions, the wave function acquires a

- 1. "+" sign because there are two of them
- 2."-" sign because they are fermions
- 3. A phase that is expressed in exp (i θ), θ can be anything
- 4. A new quantum mechanical state at the same energy
- 5. A new quantum mechanical state with a slightly different energy

- A) 1
- B) 2
- **C**) 3
- D) 4
- E) 5

Majorana III

Question 8

What are the ingredients to create Majorana zero modes in nanowires

- 1. Strong spin orbit coupling
- 2. An in-plane magnetic field to generate a Zeeman splitting
- 3. Superconducting proximity effect

- A) 1 and 2
- B) 2 and 3
- C) 1 and 3
- D) 1, 2, and 3

Majorana III

Question 8

What are the ingredients to create Majorana zero modes in nanowires

- 1. Strong spin orbit coupling
- 2. An in-plane magnetic field to generate a Zeeman splitting
- 3. Superconducting proximity effect

- A) 1 and 2
- B) 2 and 3
- C) 1 and 3
- D) 1, 2, and 3

Majorana IV

Question 9

If you observe a conductance peak near the zero bias of the dI/dV spectrum when tunneling into the type of nanowire/SC hybrid device Prof. Frolov works on, what could it be due to?

- 1.Resonant tunneling into electronic states in the middle of the SC gap
- 2. Majorana zero modes bound at the ends of the nanowire

- A) 1 and 2
- B) 2 and 3
- C) 1 and 3
- D) 1, 2 and 3

3. Andreev bound states

Majorana IV

Question 9

If you observe a conductance peak near the zero bias of the dI/dV spectrum when tunneling into the type of nanowire/SC hybrid device Prof. Frolov works on, what could it be due to?

- 1.Resonant tunneling into electronic states in the middle of the SC gap
- 2. Majorana zero modes bound at the ends of the nanowire

- A) 1 and 2
- B) 2 and 3
- C) 1 and 3
- D) 1, 2 and 3

3. Andreev bound states

Topological Photonics I

Question 10

What are necessary conditions for the realization of a photonic topological insulator?

- 1.Breaking time (z) reversal symmetry
- 2.Unit cell has more than a one-member basis
- 3. Must be in the microwave frequency regime
- 4. High-power beams as a probe
- 5. Periodicity

- A) 1
- B) 1 and 2
- C) 1, 2, 5
- D) 3, 4

Topological Photonics I

Question 10

What are necessary conditions for the realization of a photonic topological insulator?

- 1.Breaking time (z) reversal symmetry
- 2.Unit cell has more than a one-member basis
- 3. Must be in the microwave frequency regime
- 4. High-power beams as a probe
- 5. Periodicity

- A) 1
- B) 1 and 2
- C) 1, 2, 5
- D) 3, 4

Topological Photonics II

Question 10

What are the drawbacks of conventional slow-light devices?

- 1.Poor in-coupling
- 2.Enhanced scattering by
- disorder
- 3. Poor bandwidth
- 4. Weak nonlinearity
- 5. Strong polarization dependence

Topological Photonics II

Question 10

What are the drawbacks of conventional slow-light devices?

- 1.Poor in-coupling
- 2.Enhanced scattering by disorder
- 3. Poor bandwidth
- 4. Weak nonlinearity
- 5. Strong polarization dependence

Topological Photonics III

Question 11

What is the solid-state analogue to the photonic Floquet topological insulator presented in the lecture?

- 1. Graphene irradiated by circularly-polarized light
- 2.Boron nitride irradiated by circularly-polarized light
- 3. The surface of a 3D TI irradiated by circularly-polarized light
- 4. The surface of a 3D TI irradiated by linearly-polarized light

- A) 1
- B) 2
- C) 3
- D) 4

Topological Photonics III

Question 11

What is the solid-state analogue to the photonic Floquet topological insulator presented in the lecture?

- 1. Graphene irradiated by circularly-polarized light
- 2.Boron nitride irradiated by circularly-polarized light
- 3. The surface of a 3D TI irradiated by circularly-polarized light
- 4. The surface of a 3D TI irradiated by linearly-polarized light

- A) 1
- B) 2
- **C**) 3
- D) 4

Scanning SQUIDs

Question 12

Which of the following can be probed using a scanning SQUID

- 1. Local Temperature
- 2. Electrical Currents
- 3. Spins
- 4. Electric Polarization

- A) 1 and 2
- B) 2 and 3
- C) 1, 2, and 4
- D) 1, 2, and 3
- E) 1, 2, 3, 4

Scanning SQUIDs

Question 12

Which of the following can be probed using a scanning SQUID

- 1. Local Temperature
- 2. Electrical Currents
- 3. Spins
- 4. Electric Polarization

- A) 1 and 2
- B) 2 and 3
- C) 1, 2, and 4
- D) 1, 2, and 3
- E) 1, 2, 3, 4

Spintronics I

Question 13

Which materials would be good choice for the layer "X" in the quantum device shown to the right?

- 1. Cu
- 2. W
- 3. Si
- 4. Na
- 5. Ta₃Sb

- A) 1 and 2
- B) 2 only
- C) 1, 2, 4
- D) 3 and 4
- E) 2 and 5

Spintronics I

Question 13

Which materials would be good choice for the layer "X" in the quantum device shown to the right?

- 1. Cu
- 2. W
- 3. Si
- 4. Na
- 5. Ta₃Sb

- A) 1 and 2
- B) 2 only
- C) 1, 2, 4
- D) 3 and 4
- E) 2 and 5

Spintronics II

Question 14

What is the device shown to the right?

- 1. Datta-Das Spin Transistor
- 2. Spin Light Emitting Diode
- 3. Giant Magnetoresistance Sensor
- Tunneling
 Magnetoresistance Sensor

- A) 1
- B) 2
- **C)** 3
- D) 4
- E) None of the Above

Spintronics II

Question 14

What is the device shown to the right?

- 1. Datta-Das Spin Transistor
- 2. Spin Light Emitting Diode
- 3. Giant Magnetoresistance Sensor
- Tunneling
 Magnetoresistance Sensor

- A) 1
- B) 2
- C) 3
- D) 4
- E) None of the Above

Hands-on Activities

Question 15

VR is useful for visualizing crystal structures:

- A) Yes
- B) Somewhat
- C) No
- D) Not sure at present stage
- E) It made me dizzy

