Neutron Scattering with Examples from Cuprate Superconductors

 Part 2John Tranquada

BROOKHAVEN
NATIONAL LABORATORY

Quantum Science Summer School
Cornell University
June 22, 2018

Coherent magnetic scattering

> Amplitude for magnetic scattering $=p S$ $p=\left(\frac{\gamma r_{0}}{2}\right) g f(\mathbf{Q}) \quad S=\operatorname{Spin}$

$$
\begin{aligned}
\frac{\gamma r_{0}}{2} & =0.2695 \times 10^{-12} \mathrm{~cm} & & r_{0}=e^{2} / m_{e} c^{2} \\
\gamma & =1.913 & & g \approx 2
\end{aligned}
$$

Form factor

$$
\begin{gathered}
f(\mathbf{Q})=\int \rho_{s}(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d \mathbf{r} \\
f(0) \equiv 1
\end{gathered}
$$

Form factor in cuprates

Differential cross section with magnetic terms

$$
\left.\left.\frac{d^{2} \sigma}{d \Omega_{f} d E_{f}}\right|_{\mathrm{s}_{i} \rightarrow \mathrm{~s}_{f}}=\frac{k_{f}}{k_{i}} \sum_{i, f} P(i)\left|\langle f| \sum_{l} e^{i \mathbf{Q} \cdot \mathbf{r}_{l}} U_{l}^{\mathrm{s}_{i} \mathrm{~s}_{f}}\right| i\right\rangle\left.\right|^{2} \delta\left(\hbar \omega+E_{i}-E_{f}\right)
$$

$$
\begin{aligned}
\mathbf{S}_{\perp} & =\hat{\mathbf{Q}} \times(\mathbf{S} \times \hat{\mathbf{Q}}) \\
& =\mathbf{S}-\hat{\mathbf{Q}}(\hat{\mathbf{Q}} \cdot \mathbf{S})
\end{aligned}
$$

$$
\left|\mathbf{S}_{\perp}\right|^{2}=\sum_{\alpha, \beta}\left(\delta_{\alpha \beta}-\hat{Q}_{\alpha} \hat{Q}_{\beta}\right) S_{\alpha}^{*} S_{\beta}
$$

Magnetic scattering

$$
\frac{d^{2} \sigma}{d \Omega_{f} d E_{f}}=\frac{N}{\hbar} \frac{k_{f}}{k_{i}} p^{2} e^{-2 W} \sum_{\alpha, \beta}\left(\delta_{\alpha, \beta}-\hat{Q}_{\alpha} \hat{Q}_{\beta}\right) S^{\alpha \beta}(\mathbf{Q}, \omega)
$$

Dynamical structure factor

$$
S^{\alpha \beta}(\mathbf{Q}, \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d t e^{-i \omega t} \sum_{l} e^{i \mathbf{Q} \cdot \mathbf{r l}_{l}}\left\langle S_{0}^{\alpha}(0) S_{l}^{\beta}(t)\right\rangle
$$

Instantaneous correlations

$$
S^{\alpha \beta}(\mathbf{Q}, t=0)=\int_{-\infty}^{\infty} d \omega S^{\alpha \beta}(\mathbf{Q}, \omega)
$$

Sum rule

$$
\int_{-\infty}^{\infty} d \omega \int_{\mathrm{BZ}} d \mathbf{Q} S^{\alpha \beta}(\mathbf{Q}, \omega)=\frac{(2 \pi)^{3}}{3 v_{0}} S(S+1) \delta_{\alpha \beta}
$$

Polarized-beam scattering

- The component of S_{\perp} that is perpendicular to the incident neutron polarization flips the neutron spin
- If we spin-polarize the incident neutron beam, and analyze the polarization of the scattered beam, we can separate "spin-flip" and "non-spin-flip" scattering
- Polarization analysis is expensive in terms of intensity
- I'm not going to discuss this

Magnetic diffraction

$$
\begin{gathered}
\left.\frac{d \sigma}{d \Omega_{f}}\right|_{\mathrm{coh}} ^{\mathrm{el}}=N_{m} \frac{(2 \pi)^{3}}{v_{m}} \sum_{\mathbf{G}_{m}} \delta\left(\mathbf{Q}-\mathbf{G}_{m}\right)\left|\mathbf{F}_{M}\left(\mathbf{G}_{m}\right)\right|^{2} \\
\mathbf{F}_{M}\left(\mathbf{G}_{m}\right)=\sum_{j} p_{j} \mathbf{S}_{\perp j} e^{i \mathbf{G}_{m} \cdot \mathbf{d}_{j}} e^{W_{j}}
\end{gathered}
$$

Collinear spins

$$
\mathbf{F}_{M}=\mathbf{S}_{\perp} \tilde{F}_{M} \quad \tilde{F}_{M}=\sum_{j} p_{j} e^{-W_{j}} e^{i \mathbf{Q} \cdot \mathbf{d}_{j}}
$$

Average over domains

$$
\begin{gathered}
\left.\left.\left.\langle | \mathbf{F}_{M}(\{h k l\})\right|^{2}\right\rangle=\left.\langle | \mathbf{S}_{\perp}\right|^{2}\right\rangle\left|\tilde{F}_{M}(\{h k l\})\right|^{2} \\
\left.\left.\langle | \mathbf{S}_{\perp}\right|^{2}\right\rangle=S^{2}\left(1-\left\langle\cos ^{2} \eta\right\rangle\right)
\end{gathered}
$$

Antiferromagnetic order doubles unit cell

Tilt and spin orders

Octahedral tilts

Magnetic moments

Same unit cell within one plane for both, but correlation with second plane in unit cell is different.

- ○■ロ: nuclear Bragg peak $\Delta \Delta \nabla \nabla$: magnetic Bragg peak

First experiments: neutron powder diffraction

$\mathrm{La}_{2} \mathrm{CuO}_{4}$

Main panel: $\mathrm{E}_{\mathrm{i}}=14.7 \mathrm{meV}$

Insert (a): $\mathrm{E}_{\mathrm{i}}=5.1 \mathrm{meV}, \mathrm{T}=150 \mathrm{~K}$

Indexing based on Cmca space group
High resolution required to distinguish possible orthorhombic reflections.

First report mistakenly interpreted LTO (021) superlattice peak as due to AF order.

Yang et al., JPSJ 56, 2283 (1987)

Ordered moment

Compound	T_{N} (K)	m_{Cu} $(\mu \mathrm{B})$
$\mathrm{La}_{2} \mathrm{CuO}_{4}$	$325(2)$	$0.60(5)$
$\mathrm{Sr}_{2} \mathrm{CuO}_{2} \mathrm{Cl}_{2}$	$256(2)$	$0.34(4)$
$\mathrm{Ca}_{2} \mathrm{CuO}_{2} \mathrm{Cl}_{2}$	$247(5)$	$0.25(10)$
$\mathrm{Nd}_{2} \mathrm{CuO}_{4}$	$276(1)$	$0.46(5)$
$\mathrm{Pr}_{2} \mathrm{CuO}_{4}$	$284(1)$	$0.40(2)$
$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{6.1}$	$410(1)$	$0.55(3)$
$\mathrm{TlBa}_{2} \mathrm{YCu}_{2} \mathrm{O}_{7}$	>350	$0.52(8)$
$\mathrm{Ca}_{0.85} \mathrm{Sr}_{0.15} \mathrm{CuO}_{2}$	$537(5)$	$0.51(5)$

arXiv:cond-mat/05|2||5

spin wave theory: <S> $=0.303$

$$
\begin{gathered}
g \approx 2.2 \\
\mathrm{~m} \approx 0.67 \mu_{\mathrm{B}}
\end{gathered}
$$

Elastic vs. inelastic weight

2D antiferromagnet with $\mathrm{S}=\mathrm{I} / 2$

Total scattering: $\left.<\mathrm{S}^{2}\right\rangle=\mathrm{S}(\mathrm{S}+\mathrm{I})=3 / 4$
Elastic weight: $<S>2=(0.303)^{2}=0.09$
Inelastic weight: <S2> - <S>2 $=0.66$

$$
=0.88\left\langle S^{2}\right\rangle
$$

Most of the spin scattering is inelastic!
This violates the premise of perturbative spin-wave theory.

Antiferromagnetic spin waves

Assume ordered spins along z

$$
\sum_{\alpha, \beta}\left(\delta_{\alpha, \beta}-\hat{Q}_{\alpha} \hat{Q}_{\beta}\right) S^{\alpha \beta}(\mathbf{Q}, \omega)=\frac{1}{2}\left(1+\hat{Q}_{z}^{2}\right) S_{\mathrm{sw}}(\mathbf{Q}, \omega)
$$

Linear dispersion

$$
\hbar \omega_{\mathbf{q}}=\hbar c q
$$

spin-wave velocity

$$
c=z J S a / \hbar
$$

coordination number (4 for square lattice)

$$
\begin{gathered}
S_{\mathrm{sw}}(\mathbf{Q}, \omega)=S \sum_{\mathbf{G}_{m}, \mathbf{q}} \frac{\hbar \omega_{0}}{\hbar \omega_{\mathbf{q}}}\left[\left(n_{\mathbf{q}}+1\right) \delta\left(\mathbf{Q}-\mathbf{q}-\mathbf{G}_{m}\right) \delta\left(\omega-\omega_{\mathbf{q}}\right)\right. \\
\left.+n_{\mathbf{q}} \delta\left(\mathbf{Q}+\mathbf{q}-\mathbf{G}_{m}\right) \delta\left(\omega+\omega_{\mathbf{q}}\right)\right]
\end{gathered}
$$

$$
\hbar \omega_{0}=2 z J S
$$

Spin waves in $\mathrm{La}_{2} \mathrm{CuO}_{4}$

Headings et al., PRL (2010)

Exchange parameters

Large J requires intermediate coupling

$$
\mathrm{J}=4 \mathrm{t}^{2 /} \mathrm{U}
$$

Suppose $\mathrm{U}=8 \mathrm{t}$
then $\mathrm{J}=\mathrm{t} / 2$
$\mathrm{J}=143 \mathrm{meV}$ gives $\mathrm{t}=0.3 \mathrm{eV}$

$\mathrm{KCuF}_{3}: \mathrm{S}=\mathrm{I} / 2$ spin chain system

Lake et al., Nat. Mat. (2005)

Spinons and the 2-spinon spectrum

$S=1 / 2$, two-leg spin ladder

$\left(\mathrm{C}_{5} \mathrm{D}_{12} \mathrm{~N}\right)_{2} \mathrm{CuBr}_{4}$

ground state: singlets on rungs
excited state: triplet can disperse along ladder

$$
\begin{aligned}
& J_{\text {rung }}=1.09 \mathrm{meV} \\
& J_{\text {leg }} / J_{\text {rung }}=0.29
\end{aligned}
$$

Savici et al., PRB (2009)

Magnetic critical scattering

Neutron scattering on single crystal $\mathrm{La}_{2} \mathrm{CuO}_{4}$
Shirane et al., PRL 59, 1613 (1987)
Rods of scattering from 2D spin correlations

Cu spins maintain 2D correlations to high T

$$
S\left(\mathbf{q}_{2 \mathrm{D}}\right) \sim 1 /\left[\left(\mathbf{(}_{2 \mathrm{D}}\right)^{2}+\xi^{-2}\right]
$$

$\xi=$ spin-spin correlation length

$$
\begin{gathered}
\xi^{-1} \sim \exp (-\alpha J / T) \\
J=135 \mathrm{meV} \sim 1500 \mathrm{~K}
\end{gathered}
$$

Theory:
Chakravarty, Halperin,+Nelson, PRB 39, 2344 (1989)

Hasenfratz+Niedermayer,
Phys. Lett. B 268, 231 (1991)

Expt: Birgeneau et al., JPCS 56, 1913 (1995)

Single CuO_{2} layer should order AF at $\mathrm{T}=0$

$\xi(T)$ is consistent with Renormalized Classical behavior and not Quantum Disordered

Chakravarty et al., PRL (1988)

FIG. 1. Crossover phase diagram for $d=2 . v_{d+1}=0.7$ for $d=2$. \tilde{g}_{c} is the critical point of the $(d+1)$-dimensional nonlinear σ model.

Stripes and superlattice peaks

Spin and charge stripe order

Fujita et al., PRB (2004)

Charge order: stripes, not checkerboard

Constant-energy slices through magnetic scattering

Stripe-ordered
$\mathrm{La}_{1.875} \mathrm{Ba}_{0.125} \mathrm{CuO}_{4}$

$$
\mathrm{T}=12 \mathrm{~K}
$$

$$
\mathrm{T}_{\mathrm{c}}<6 \mathrm{~K}
$$

JMT et al., Nature (2004)

$\mathrm{La}_{1.875} \mathrm{Ba}_{0.125} \mathrm{CuO}_{4}$
Fujita et al., PRB (2004)

Spectral weight and dispersion

Universal magnetic spectrum

JMT et al., Nature (2004)
Vignolle et al., Nat. Phys. (2007) Hayden et al., Nature (2004)
Stock et al., Phys. Rev. B (2005), (2010)
Xu et al., Nat. Phys. (2009)

Stripe order:
compatible with 2D SC at 40 K
frustrates interlayer Josephson coupling
Q. Li et al., PRL (2007)

JMT et al., PRB (2008)

Intertwined Orders

Antiferromagnetism

$$
\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow
$$

$$
』 \uparrow 』 \uparrow \downarrow
$$

Spin Stripes

Uniform d-wave Superconductor

Pair Density Wave
Intertwined
antiferromagnetism
and
superconductivity

2D SC and Pair-Density-Wave Superconductor

CDW SDW

Frustration of interlayer coupling:
Himeda et al., PRL (2002) Berg et al., PRL (2007)
P.A. Lee, PRX (2014)

Intertwined superconductivity and antiferromagnetism

Intertwined orders

(a)

(b)

(c)

(d)

Fradkin et al., RMP (2015)

AF order

SDW+CDW
d-wave SC

Pair density wave +SDW+CDW

Spallation Neutron Source

 BL-2
Dynamics of macromolecules, constrained molecular systems, polymers, biology,
chemistry, materials science chemistry, materials science

Spallation Neutrons and Pressure Diffractometer [SNAP] • BL-3

Materials science, geology, earth

 and environmental sciences Chris Tulk • 865.574.5764-tulkca@ornl.govNanoscale-Ordered Materials Diffractometer [NOMAD] • BL-1B
Liquids, solutions, glasses, polymers, nanocrystalline and partially ordered complex materials
Joerg Neuefeind • $865.241 .1635 \cdot$ neuefeindjc@ornl.gov

Wide Angular-Range
Ohopper Spectrometer
[ARBS] • BL-18
Atomic-level dynamics in materials science, chemistry, condensed matter sciences Doug Abernathy $\cdot 865.617 .5624 \cdot$ abernathyd@ornl.gov

> Fine-Resolution Fermi Chopper Spectrometer [SEQUOMA • BL-17

Dynamics of complex fluids, quantum fluids, magnetism, condensed matter, materials science Matthew Stone • 865.202.6898 • stonemb@ornl.gov

*Scheduled commissioning date LECEND
Operating instrument in user program In design or construction
Under consideration

*Scheduled commissioning date
LEGEND
\quad Operating instrument in user program
In design or construction
Under consideration

15-G00337A/gim

Ultra-Small-Angle Neutron Scattering Instrument [USANS] • BL-1A
Life sciences, polymers, materials science,
earth and environmental sciences earth and environmental sciences Michael Agamalian • 865..382.636 Michael Agamalian • 865.382.
magamalian@ornl.gov

Vibrational Spectrometer [visions•
BL-16B
Vibrational dynamics in molecular systems, chemistry
Yongqiang Cheng • 865.5576.9064 - chengy@ornl.gov
BL-164
Neutron Spin Echo Spectrometer [NSE] • BL - 15

High-resolution dynamics of slow processes, polymers, biological macromolecules
Michael Ohl • 865.574.8426 - ohlme@ornl.go

Hylrid Spectromete [HYSP: H • $\cdot \mathrm{BL}$-14B

Atomic-level dynamics in single
crystals, magnetism, condensed crystals, magnetism, condensed matter sciences
Barry Winn • 865.805.6819 • winnb@ornl.gov
BL-14A

Fundamental Neutron Physics Beam Line •BL-13
Fundamental properties of neutrons Geoffrey Greene • 865.576.0023 • greeneg @ornl.gov

Single-Grystal Dififractometer [TOPAZ] - BL-12

Atomic-level structures in chemistry, biology, earth science, materials science, condensed matter physics Christina Hotfmann $\cdot 865.576 .51$

Versatile Neutron Imaging Instrument at SNS [UENUS] • Bl-10
Energy selective imaging in materials science, engineering, materials processing, environmental
sciences and biology
Hassina Bilheux $\cdot 865.384 .963$

Powier Diffractometer [POWAEN]•BL-114

Atomic-level structures in chemistry, materials science, and condensed matte physics including magnetic spin structures

Ashfia Huq-630.986.7321 - huqa@ornl.gov

HYSPEC

HYbrid SPECtrometer
 BLI4B at the SNS (ORNL)
 Time-of-flight with area detector
 Polarization analysis

NIST Center for Neutron Research

