Neutron Scattering with Examples from Cuprate Superconductors Part 2

John Tranquada

Quantum Science Summer School Cornell University June 22, 2018

Coherent magnetic scattering

Amplitude for magnetic scattering =
$$pS$$

 $p = \left(\frac{\gamma r_0}{2}\right) gf(\mathbf{Q})$ $S = \text{Spin}$

$$\frac{\gamma r_0}{2} = 0.2695 \times 10^{-12} \,\mathrm{cm} \qquad r_0 = e^2 / m_e c^2$$

$$\gamma = 1.913$$
 $g \approx 2$

Form factor
$$f({\bf Q}) = \int \rho_s({\bf r}) e^{i{\bf Q}\cdot{\bf r}} d{\bf r}$$

$$f(0) \equiv 1$$

Form factor in cuprates

Differential cross section with magnetic terms

$$\frac{d^2\sigma}{d\Omega_f dE_f} \bigg|_{\mathbf{s}_i \to \mathbf{s}_f} = \frac{k_f}{k_i} \sum_{i,f} P(i) \left| \langle f | \sum_l e^{i\mathbf{Q} \cdot \mathbf{r}_l} U_l^{\mathbf{s}_i \mathbf{s}_f} | i \rangle \right|^2 \delta(\hbar\omega + E_i - E_f)$$

 $U_l^{\mathbf{s}_i \mathbf{s}_f} = \langle \mathbf{s}_f | b_l - p_l \mathbf{S}_{\perp l} \cdot \boldsymbol{\sigma} + B_l \mathbf{I}_l \cdot \boldsymbol{\sigma} | \mathbf{s}_i \rangle$ magnetic interaction vector neutron spin state nuclear spin operator

$$\mathbf{S}_{\perp} = \hat{\mathbf{Q}} \times (\mathbf{S} \times \hat{\mathbf{Q}})$$
$$= \mathbf{S} - \hat{\mathbf{Q}}(\hat{\mathbf{Q}} \cdot \mathbf{S})$$

$$|\mathbf{S}_{\perp}|^2 = \sum_{\alpha,\beta} (\delta_{\alpha\beta} - \hat{Q}_{\alpha}\hat{Q}_{\beta})S_{\alpha}^*S_{\beta}$$

Magnetic scattering

$$\frac{d^2\sigma}{d\Omega_f dE_f} = \frac{N k_f}{\hbar k_i} p^2 e^{-2W} \sum_{\alpha,\beta} (\delta_{\alpha,\beta} - \hat{Q}_{\alpha} \hat{Q}_{\beta}) S^{\alpha\beta}(\mathbf{Q},\omega)$$

Dynamical structure factor

$$S^{\alpha\beta}(\mathbf{Q},\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, e^{-i\omega t} \sum_{l} e^{i\mathbf{Q}\cdot\mathbf{r}_{l}} \langle S_{0}^{\alpha}(0)S_{l}^{\beta}(t) \rangle$$

Instantaneous correlations

$$S^{\alpha\beta}(\mathbf{Q}, t=0) = \int_{-\infty}^{\infty} d\omega S^{\alpha\beta}(\mathbf{Q}, \omega)$$

Sum rule

$$\int_{-\infty}^{\infty} d\omega \int_{\mathrm{BZ}} d\mathbf{Q} \, S^{\alpha\beta}(\mathbf{Q},\omega) = \frac{(2\pi)^3}{3v_0} S(S+1)\delta_{\alpha\beta}$$

Polarized-beam scattering

- The component of S_{\perp} that is perpendicular to the incident neutron polarization flips the neutron spin
- If we spin-polarize the incident neutron beam, and analyze the polarization of the scattered beam, we can separate "spin-flip" and "non-spin-flip" scattering
- Polarization analysis is expensive in terms of intensity
- I'm not going to discuss this

Magnetic diffraction

$$\frac{d\sigma}{d\Omega_f}\Big|_{\rm coh}^{\rm el} = N_m \frac{(2\pi)^3}{v_m} \sum_{\mathbf{G}_m} \delta(\mathbf{Q} - \mathbf{G}_m) |\mathbf{F}_M(\mathbf{G}_m)|^2$$

$$\mathbf{F}_M(\mathbf{G}_m) = \sum_j p_j \mathbf{S}_{\perp j} e^{i\mathbf{G}_m \cdot \mathbf{d}_j} e^{W_j}$$

Collinear spins

$$\mathbf{F}_M = \mathbf{S}_\perp \tilde{F}_M \qquad \qquad \tilde{F}_M = \sum_j p_j e^{-W_j} e^{i\mathbf{Q}\cdot\mathbf{d}_j}$$

Average over domains

 $\langle |\mathbf{F}_M(\{hkl\})|^2 \rangle = \langle |\mathbf{S}_\perp|^2 \rangle |\tilde{F}_M(\{hkl\})|^2$ $\langle |\mathbf{S}_\perp|^2 \rangle = S^2(1 - \langle \cos^2 \eta \rangle)$

Antiferromagnetic order doubles unit cell

Q = (h, k, l)

in units of $(2\pi/a, 2\pi/b, 2\pi/c)$

Octahedral tilt pattern in LTO is same as AF order; however, structure factor for tilted octahedra at Q = (1/2, 1/2, L) is zero if L = 0.

Tilt and spin orders

Same unit cell within one plane for both, but correlation with second plane in unit cell is different. ● ○ ■ □: nuclear Bragg peak
▲ △ ▼ ▽: magnetic Bragg peak

First experiments: neutron powder diffraction

La₂CuO₄

Main panel: $E_i = 14.7 \text{ meV}$

Insert (a): $E_i = 5.1 \text{ meV}, T = 150 \text{ K}$

Indexing based on *Cmca* space group

High resolution required to distinguish possible orthorhombic reflections.

First report mistakenly interpreted LTO (021) superlattice peak as due to AF order.

Yang et al., JPSJ 56, 2283 (1987)

Ordered moment

spin wave theory: $\langle S \rangle = 0.303$ $g \approx 2.2$ $m \approx 0.67 \ \mu_B$

Elastic vs. inelastic weight

2D antiferromagnet with S=1/2

Total scattering: $\langle S^2 \rangle = S(S+I) = 3/4$

Elastic weight: $\langle S \rangle^2 = (0.303)^2 = 0.09$

Inelastic weight: <S²> - <S² = 0.66 = 0.88 <S²>

Most of the spin scattering is inelastic! This violates the premise of perturbative spin-wave theory.

Antiferromagnetic spin waves

Assume ordered spins along z

 $\hbar\omega_{\mathbf{q}} = \hbar c q$

$$\sum_{\alpha,\beta} (\delta_{\alpha,\beta} - \hat{Q}_{\alpha}\hat{Q}_{\beta})S^{\alpha\beta}(\mathbf{Q},\omega) = \frac{1}{2}(1 + \hat{Q}_{z}^{2})S_{sw}(\mathbf{Q},\omega)$$

Linear dispersion

spin-wave velocity

$$c = zJSa/\hbar$$
coordination number
(4 for square lattice)

$$S_{\rm sw}(\mathbf{Q},\omega) = S \sum_{\mathbf{G}_m,\mathbf{q}} \frac{\hbar\omega_0}{\hbar\omega_{\mathbf{q}}} [(n_{\mathbf{q}}+1)\delta(\mathbf{Q}-\mathbf{q}-\mathbf{G}_m)\delta(\omega-\omega_{\mathbf{q}}) + n_{\mathbf{q}}\delta(\mathbf{Q}+\mathbf{q}-\mathbf{G}_m)\delta(\omega+\omega_{\mathbf{q}})],$$

$$\hbar\omega_0 = 2zJS$$

Spin waves in La₂CuO₄

Headings et al., PRL (2010)

Exchange parameters

 $J = 143 \pm 2 \text{ meV}$

$$J' = J'' = 2.9 \pm 0.2 \,\mathrm{meV}$$

 $J_c = 58 \pm 4 \text{ meV}$

Headings et al., PRL (2010)

Coldea et al., PRL (2001)

Large J requires intermediate coupling

$$J = 4t^{2}/U$$

Suppose U = 8t

then J = t/2

J = I43 meV gives t = 0.3 eV

KCuF₃: S = 1/2 spin chain system

Lake et al., Nat. Mat. (2005)

Spinons and the 2-spinon spectrum

Zaliznyak, Nat. Mat. (2005)

S = 1/2, two-leg spin ladder

$(C_5D_{12}N)_2CuBr_4$

ground state: singlets on rungs

excited state: triplet can disperse along ladder

Magnetic critical scattering

Cu spins maintain 2D correlations to high T

Expt: Birgeneau *et al.*, JPCS **56**, 1913 (1995)

Single CuO₂ layer should order AF at T=0

ξ(T) is consistent with Renormalized Classical behavior and not Quantum Disordered

Chakravarty et al., PRL (1988)

FIG. 1. Crossover phase diagram for d=2. $v_{d+1}=0.7$ for d=2. \tilde{g}_c is the critical point of the (d+1)-dimensional non-linear σ model.

Stripes and superlattice peaks

Spin and charge stripe order

Fujita et al., PRB (2004)

Charge order: stripes, not checkerboard

Constant-energy slices through magnetic scattering

Stripe-ordered La_{1.875}Ba_{0.125}CuO₄ T = 12 K $T_c < 6 \text{ K}$

JMT et al., Nature (2004)

$La_{1.875}Ba_{0.125}CuO_4$

Spectral weight and dispersion

Universal magnetic spectrum

JMT et al., Nature (2004) Vignolle et al., Nat. Phys. (2007) Hayden et al., Nature (2004) Stock et al., Phys. Rev. B (2005), (2010) Xu et al., Nat. Phys. (2009)

LBCO x = 1/8

compatible with 2D SC at 40 K

frustrates interlayer Josephson coupling

Q. Li et al., PRL (2007) JMT et al., PRB (2008)

Intertwined Orders

Uniform d-wave Superconductor

Pair Density Wave

Intertwined antiferromagnetism and superconductivity

2D SC and Pair-Density-Wave Superconductor

Frustration of interlayer coupling: Himeda et al., PRL (2002) Berg et al., PRL (2007)

P.A. Lee, PRX (2014)

Intertwined superconductivity and antiferromagnetism

Intertwined orders

Fradkin et al., RMP (2015)

Spallation Neutron Source

World's most intense pulsed, accelerator-based neutron source

HYSPEC

HYbrid SPECtrometer

BL14B at the SNS (ORNL) Time-of-flight with area detector Polarization analysis

NIST Center for Neutron Research

