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Materials That Made an Impact

[E]
Stone

2,600,000 years ago

Useful qualities: hard,
durable, sharp

Applications: pounding,
cutting, scraping

Wood
500,000 years ago

Useful qualities: light, easier to
carve, ubiquitous

Applications: fuel, spears,
handles, buildings, boats

Ceramics
20,000 years ago

Useful qualities: moldable,
durable, easy to make,
cheap as dirt

Applications: food storage,
cooking

Metal Alloys
5,500 years ago

Strong, sharp, reusable,
corrosion resistant

Applications: Swords, axes,
arrowheads, plows, machinery

The Roman Empire

in 117 AD, at its greatest extent
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]g?[ More Recently

Conductors ' Quantum Materials?
Polymers (Topological Insulators,
Semiconductors Graphene, 2D TMDs,
Dielectrics etc.)
150-200 Years Ago A Few Years Ago

Useful qualities: Transport and

control of electrons — S0 ’ Wh at’s Next? Useful qualities: ??

. : . icati - 297
Applications: microelectronics Applications: ??%

4 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



[E]

Potential Applications of Quantum Materials

Recently discovered physics phenomena in low dimensional materials may enable transformational performance

or power advantages in electronic and photonic information processing systems

Beyond Moore’s Law Computing: A new device for classical computing which
IS not constrained by the ubiquitous 60 mV/decade thermodynamic limit

Quantum Computing: New qubit modalities with robust retain gate fidelity due N
to spin-valley locking Today'’s
Focus

Photonics: New integrated microphotonic non-reciprocal elements such as

optical isolators

Lasers: New energy-efficient, low-threshold on-chip lasers based on exciton

polaritons
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[E]

Two Dimensional Materials for Electronics

A Full Suite of Electronic Properties in 2D Materials

Band Gap [eV]

6
2D Metal / Semimetal 2D Semiconductor 2D Insulator
]

h-BN 19
T4
Superconductors: GaN +3

NbS,, NbSe,

Ta$s,, TaSe,
........................................................................................................... 5 2

MoTe, WTe,
N - T O oS e esseeeeeeeseeeen] 4 1

Graphene Ge

© 0

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



Monolayer Transition Metal Dichalcogenides

PHYSICAL REVIEW LETTERS 010

NANO......,

PEL 105, 136805 (2010}

Eme rgl ng Pho to l uminescence in M 0 no}aye r Atomically Thin MoS;: A New Direct-Gap Semiconductor
MOSZ Kin Fai Mak.' Changgu Lee.” James Hone." Jie Shan.* and Tony F. Heinz"*
wering, Columbia Universirg 5338 Wesy 120th Steeer,
w York 10027, USA
ISKKU Advanced Institute of Nanotechnology (SAINT) and Department of Mechanical Engineering,
Sungh i Liiv suwort S40-746, Korea
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at Davis, Davis

hemistry Department, University of Califor
sion, Lawrence Berkeley National Laboratory, Berkeley, Cali

ia 94720 The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N = 12,6
5-Mo-8 Ny have been investi; 1 by optical spectroscopy. Through characterization by
ahsorption, photoluminescence, and photoconductivity spectroscopy. we trace the effect of quanium
electronic structure. With decreasing thickness, the indirect band gap.
p in the bulk material, shifts upwards in v by more than 0.6 ¢V, This
leads to a crossover to a di p material in the limit of the single monola Unlike the bulk matenial,
the MoS, monolayer emits light strongly. The freestanding monolayer exhibits an increase in lumines-
cence quantum efficiency by more than a factor of 10° compared with the bulk material,
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2D TMDs are unquestionably
scientifically interesting. Can
they be applied to solve our
computational technology
problem?
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@ 2D Transition Metal Dichalcogenide Properties

e Thin N
— Single monolayer <10 A
* Stretchable Flexible, transparent
— Strain up to 11% demonstrated = electronic/photonic
_ devices
* Direct bandgap
 No surface states Flori etal, 2014
— No trap-induced device degradation —
« Strong exciton binding energy
— 200-500 meV vs 10’s meV in bulk
semiconductors Can we exploit these
_ _ ) a0 Y 52 properties to develop a
 Broken inversion symmetry \J e S |y ™ logic device that
— Valley contrasting Berry curvature & outperforms silicon?
orbital magnetic moment |t) +e [¥) -2
: : : Oy N Jpyen
e Strong spin-orbit coupling K K’
—
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Simulated Circuit Performance of Proposed Devices

]@[ Zoology of Logic Devices to Outperform Silicon

105 o0
; ASL-PMA ASL @ A spin logic
[ ASL-I—: “ - CCCSL . Complementary spin logic
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]@[ What's the fundamental problem here?

« Computation rate is limited by power, either available system power (e.g., cell phones)
or dissipated power causing overheating (e.g., servers)

« Total power is the sum of static and dynamic (switching) power

10
2 8 l
= 2
£ 6 Edynamic = alV
S Vg-V
c 4r . 9 t Va
-~ Dynamic . ( Vr )[ -7
8 2 | . Estatic — VddKe 1—e Vrlt
P Static
S

0

0.2 0.4 0.6 0.8 1
Vyq (V)

o

« One way to reduce power is to make the device smaller

10 From Wang, VLSI, 2002 LINCOLN LABORATORY
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@ Switching Energy Near the End of Scaling
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]@[ What's the fundamental problem here?

« Computation rate is limited by available power, either system power (e.g., cell phones)
or dissipated power causing overheating (e.g., servers)

« Total power is the sum of static and dynamic (switching) power

10
® 8 l
= 2
£ 6 Edynamic = alV
o Vg-V
c 4r . 9 t Va
- Dynamic . ( Vr )[ —37
8 2 | . Estatic — VddKe 1—e Vrlt
P Static
S

0

0.2 0.4 0.6 0.8 1
Vyq (V)

o

« One way to reduce power is to make the device smaller

« The most efficient way to reduce power is to reduce operating voltage

12 From Wang, VLSI, 2002 LINCOLN LABORATORY
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]@[ Thermodynamic Tyranny

 Any switching device based on gated drift/diffusion of electrons will be limited to no
more than one decade of current rise per 60 mV of V4 at room temperature

Vg
Long channel transistors X 104k W=8pum /L=150 nm
Ss=1 (10)kT(1+C"’> \‘f( W\fd
= In _ e
q Cox
ﬁ 10
< E
1 3
f(E) - 14+ e(E—Ef)/kT / "'%10'8
Fermi Dirac electron distribution
10-10
Taking into account static power, V, variation, and
stochastics across 0(10°) transistors, the minimum 10'122 S — '10‘ ' vy — 1'0' ' 0
practical V for high performance computing is ~0.6 V ' ' Y iV) ' '
g
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[E]

Thermodynamic Tyranny

 Any switching device based on gated drift/diffusion of electrons will be limited to no
more than one decade of current rise per 60 mV of V4 at room temperature

SpinFETS?
TunnelFETs?

Photons?

Are we done?

What other options do we have for logic devices?
Well spin is usually carried by electrons, so ...

Possibly. Different set of challenges.

Maybe, but would need A = 20nm to achieve competitive device size/speed

How about valleys?

N@; there is apother ...

14

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Valleytronics Refresher

Valleytronics: Exploiting the crystal momentum state of real or quasi particles
in 2D materials for something useful

2D Transition Metal Dichalcogenide ) It +a 1) -2

\J |}) 12 \/ 1) "2 Two well-defined and

Material Properties _
accessible crystal

= Lack of inversion symmetry S— momentum states
= Time reversal symmetr i oS
y y It) +12 J4) -2 protected by spin-

= Direct bandgap m “)_m m h)”” valley coupling

= Strong spin orbit coupling
K K’

Interesting Properties
« Deterministic valley initialization
« Valley coupling to external fields
« Valley-specific state readout

Valley Polarized Current Transport  Spin/valley injector Moire potential i
[Shimazaki, Nature Physics, 2015] [Zhong, Sci Adv, 2017] [Mischenko, Nature Nanotech, 2014] [Vitale, Small, 2018]
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@ Let’'s Look at the Valley Information Carrier Candidates

Information Valley Spin Existing logic Low switching
Carrier polarized | polarized | implementations energy

. Fermi function
Free electron Yes Slightly Yes Maybe for valley-
Free hole Yes Yes Yes Maybe ﬁﬂg:negdezlh °
Exciton Yes No Not yet Maybe
Trion Maybe Maybe Not yet Maybe
B|e>.<C|tons, dark Inefficient generation and readout
excitons etc.

For now, let’'s assume excitons are the information carrier
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Logical 0 and 1 States in Momentum Space

Energy

Monolayer MoS, Band Diagram

SOC not shown

(11 O” (11 1”

__/

M K I -K -M I

Can initialize and readout |0) and |1) states

CMOS Voltage High
Valleytronic Particle crystal K -K
momentum
But ... how do we switcha|0)toa|1) ?
1K)

Are you telling me that you'built'a
time machine out of a Dellorean?

17
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BE

Can We Do It By Breaking Valley Degeneracy?

N\

Energy

1.9eV

<1.9eV

__/

Shift energy of K valley vs -K valley via:

- Optical Stark Effect [Sie, Nature Materials, 2015]

- Zeeman Effect [macNeil, PRL, 2015]

- Magnetic Proximity Effect [zhong, SciAdv, 2017]

Well ... a |K) state probably will not evolve to a
| — K) state since they are momentum protected

K—— -K

e e-

-K r K
e e-
K -K K -K

18
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@ Deterministic Switching from 0 to 1: |K) to |K’)

D '
IR) =i2<|x>+i|y>> K) _ \Q/

5
O\ 7

< 2

|L) = i(|J\f) —ily)) / m O
2 |K') <

—~ U\

7

S -
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@ Perhaps Using Spatially Indirect Excitons

*Bilayer of two different TMDs with

Type Il band alignment
WSe,

*Electron resides in one layer, hole resides
in other layer
WS, Y
* Spatial separation forces an out-of-plane
static dipole

*Maybe flip dipole (and valley)

a e electrostatically?
-:— o = 1| .
z 2 ; . Possible route to an
2. ' 15 | *. Needto increase
-- " Jiich 4 contrast and
et | -+ reduce voltage
= ! . . . 2:;‘" I‘”\ —_—
1.30 1.36 1.40 145 1.50 136 EL:WIL:‘: 148 _q
Ciarrocchi et al, Nature Photonics, Feb 2019 PL energy (eV)
20
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]@[ Deterministic Switching from 0 to 1: |X) to |Y)

1 -

: RPN K)
5 (1) 4 1)) + 7= (1)~ ily) |

X) =
1X) = o

Eyx > Ey WANTED
DEAD & ALIVE
SCHRGDINGERS CAT.
V) = —— (%) + i3)) — —= (Jx) — ily) - K
_\/E y \/E y
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[E]

Deterministic Switching from 0to 1: |X) to |Y)

a Ye, Sun, Heinz, Nature Physics, 2016

) K7
A exciton N A
—A—©L\7‘ U‘Tv@*

ha

Y

IK) + [K)

Ground state

02 I I
‘ ".-l..l I I *
o —l es3%t 00 m
01% un I R =82,
* u * .
. e I *0 uf
»
0.0 ._.’. ¢. -.. Q’ .'. ..
°Q * " I’O' | .' ;_i"o"o *
Ind g
SO-01F % ¢ oo, o ,.lt | w2 *
\. oy ¥ - n /.-
\, ) [
-02 ‘\. 'f\ I T b4
o\ 1.
. \o—
\, . AT L
-03[ *o C AN L* = Left-handed
.'-.. I '.‘I # Right-handed
-0.4 - ...., ¢ ® Linear
! ! [ !
0 4 90 135

Analyser angle, & (°)

\2

L.

\ [K)

K

Optical Stark Effect

1+ (aTy,)’

IK) + Ky >
N2 |K> + ||<’>
2
Sxo QT}ZS
Sx _ Sy _ X0

1+ (Ty,)

HStark/\

|

»

LY

Ad

IK) +1|K")

K

hQ = gugB

Precession of valley polarization by
40° demonstrated, limited by valley
coherence time and Stark field

Possible route to an
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@ That’s nice, but did anyone notice the 800 pound Gorilla?

Intel Core 19-7980XE

18 CPU cores

14nm++ process

Approx. 8 billion transistors

We’'re going to need more than an inverter ...
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[E]

Need Complete Set of Logic Gates

NOT

AND

OR

NAND

NOR

XOR

XNOR

YOYYYOY

J

saleb 1ndul-z

2 bit multiplier

e _!CBJ—' pa— §33

[0
:*_[:%J_
BO|4D
EHE e

3
Any non-trivial circuit requires concatenation
All inputs and outputs must be in the same
domain: excitons-in — excitons-out
Could have an ancillary control line in a
different domain

Hard problem #2: develop a viable set
of 2-input exciton logic gates

24
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]@[ Concatenation Implies Fan-Out and Gain

 Must have some way to vary the drive
strength of valley gates

* For silicon CMOS this is easy: drive
current is proportional to transistor width

 One gate wide transistor can provide the
Input to many smaller gates

Y
AT

Hard problem #3: Demonstrate a device
that supports exciton fan out and gain
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]@[ Valley Lifetime

« Valley information has a rather short lifetime
« How long does the valley lifetime have to be?
* In a classic RISC architecture there are five stages

Instruction Instruction Execution Memory
fetch decode address

Write
back

e Assume:
— simple non-pipelined CPU
— simple 1-cycle execution stage
— valley information transport velocity = CMOS info transport velocity*

* Need ~ 5 ns to complete an instruction

* Requires gate speed 0(100 ps)

26
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[E]

Measured Valley Lifetime

1E-05
1E-06
1E-07
1E-08
1E-09
1E-10
1E-11
1E-12
1E-13

Valley Lifetime (s)

®
®
o0 o
®
»
® ®
@ ®
] L ]
J [ 8 [ 8 J [ 8 J
o o o o o o
— — — — — —
[ %) L) p-Y Ch N =

®Excitons e Trions eElectrons eHoles

8L0g

<« Useful BER < 105 (50 ns)

<+ Minimum to complete an

instruction (5 ns)

<+ Single valley rotation time (50 ps)

Need to improve material quality.

Valley lifetimes approaching that needed for practical computation
have been measured for electrons and holes, but not for excitons.
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Valleytronic Quality Material

<" Matte Finis
Magic™ Tap.

ybdenite crystal

28

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Valleytronic Quality Material

« Grown material (e.g., CVD, MBE, ALD) is the only practical option

e So far, monocrystalline, monolayer TMD growth has not been demonstrated
— Growth process is not self limiting

 Many reports of “wafer scale” growth but these are polycrystalline, multilayer, or both

I — I mmmm 6" layer: discontinuous
I IS N e 50 |gyer: discontinuous
e 4" layer: continuous, crystallites 1to 10 um
I 3¢ layer: continuous, crystallites 1to 10 um

Typical: e 24 [ayer: continuous, crystallites 1 to 10 um
I 15t [ayer: discontinuous, crystallites 0.1 um

How do we get decent wafer-scale monolayer material?
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@ Valleytronic Quality Material

Growth of thick Exfoliation of

Deposition of Deposition of bottom Ni

2D mpterials top Ni sticker entire 2D materials
s — hH“‘ — T g
Sapphire wafer , | Ni =

1 1st split

Repeated

lit
o~

Last split

Ni
Transfer to
host wafer l

Ta ML T
2D material
Host wafer
Shim et al, Science, 2018 _

80 LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



[E]

Successful Layer Resolved Splitting

Optical

AFM

Before

PL intensity «o:

2

i)

0

1st ML

2nd ML

3rd ML

4th 13 M Lu

Intensity (a.u.)

Photoluminescence

No LRS —— 1stLRS
2nd LRS 3rd LRS

1.9 2.0 2.1
Energy (eV)

Isolation of wafer scale monolayer 2D
™ material is an important advancement

But, the material is still polycrystalline ...
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@ When Reality Sets In
A Look at Real TMD Materials

Single crystals: 1 to 100 pm Polycrystalline monolayers: um’s to cm’s

* Are Valleytronic properties
preserved in polycrystalline
monolayers?

e Ordoweneedto grow cm-
scale single crystals for
integrated device fabrication?

CVD Grown MoS,

Measure valley photoluminescence polarization across various crystal morphologies
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]@[ Raman-corrected Photoluminescence Imaging

PL vectors at many Valley

Simultaneous polarized Raman and PL ' L . . :
P Optical incidence polarizations Polarization Imaging

§ ”2/ FL2 CL2 / FL
M3 .I_;\ ? /\ =
/ igsgp?!]g HWP2 L:xz D D { s D

i J i, .

eeeeeeeeeee

Allows precise, artifact-free measurement of valley initialization
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@ Effect of Morphology on Valley Polarization

Temperature =4 K

Triangle Star Merged

42% polarization 32% polarization 41% polarization

Domain boundaries and polycrystallinity does not strongly degrade valley polarization

Note: spot size 1ym << domain size
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[E]

Valley Polarization Mapping

Temperature =4 K

Merged Star Triangle

; 30%
0.2
0.1
0
-0.1
-0.2
-30%

J FWHM =4% L FWHM=6% |

I
80+ 80 |
\ ‘ |
| |
) &0 ‘ { 60 -
|
|

20 -

Remarkably, valley polarization uniformity is comparable for
polycrystalline and single crystal domains
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]@[ What about at Room Temperature?

i
o

&

18%

\

w
o

ka
o
!

Valley Polarization %
=
o

0 50 100 150 200 250 300
Temperature (K)

o

Need significant improvement in state initialization
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]@[ Towards Efficient State Initialization

Steady State PL polarization:

Kioseoglou et al., Appl Phys Lett, 2012.

«Can get very high polarization
If Toye IS Short

But for computation need

long T, and T, >> T,

Po Exciton lifetime
Pcire = T Valley lifeti
alley litetime
1 + 2 BXC/ Y
Ty
Decreased by Increased By
Exciton Stem lallellig energy Strain
S Small Bohr radius o
Lifetime : : Localization
Recombination centers
Valley Exchange interaction SOC
I Phonons . .
Lifetime : : Substrate isolation
Magnetic scattering centers
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]@[ A Tale of Two Valleys

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was
the season of Darkness, it was the spring of hope, it was the winter of despair ...

Valleytronics offers a new degree of freedom for information processing

For classical computing, the key bottleneck for new logic devices is switching energy

— Any logic device based on diffusion/drift of charge will be no better (or only marginally
better) than conventional silicon CMOS

Computation based on valley-polarized excitons is plausible but there are several
hard problems to be solved

— figure out a way to deterministically flip an exciton between |K) and | — K) states
— develop aviable set of 2-input exciton logic gates
— demonstrate exciton fan out and gain

Alternatively, it might be easier to develop a valley tunnel FET
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