2019 NSF/DOE/AFOSR Quantum Science Summer School (QS³) June 3-14, 2019 --- Penn State University #### LECTURE 1: Monday, June 3 Phase-sensitive measurements on superconducting quantum materials and hybrid superconductor devices Josephson physics and techniques useful for exploring superconductor materials and devices, focusing on probing unconventional superconductors and junctions ## LECTURE 2: Tuesday, June 4 S-TI-S Josephson junction networks: a platform for exploring and exploiting topological states and Majorana fermions A specific device architecture that may support Majorana fermions and shows promise for manipulating them for quantum computation processes Dale J. Van Harlingen University of Illinois at Urbana-Champaign ## Josephson Interferometry: what it tells you Critical current variation Gap anisotropy Domains Charge traps Currentphase relation Non-sinusoidal terms π -junctions Exotic excitations e.g. Majorana fermions Order parameter symmetry Unconventional superconductivity Magnetic field variations Flux focusing Trapped vortices Magnetic particles ## Effect of non-sinusoidal CPR on diffraction patterns ## Direct measurement of the Current-Phase Relation ## Interferometer technique (Waldram) Junction in SC loop (rf-SQUID) Inject current → divides according to phase Detect flux with SQUID Extract CPR Developed to study superconducting microbridges → skewed CPR from an inductance that gives extra phase #### Asymmetric dc SQUID technique Junction embedded in dc SQUID Apply flux → induces circulating current Measure critical current vs. flux Modulation is dominated by the phase evolution of the small junction ## Superconductor-Graphene-Superconductor Junctions High transparency states give higher harmonic contributions to the CPR, inducing skewness $$I_c = \frac{e\Delta}{h} \sum_{i=0}^{\infty} \frac{T_n \sin(\phi)}{\sqrt{1 - T_n \sin^2(\phi/2)}}$$ $$I_c(\phi) = \frac{e\Delta}{h} \frac{2W}{L} \cos(\phi/2) \tanh^{-1}(\sin(\phi/2))$$ Titov and Beenaker, PRB 94, 041401 (2006) $$I_c(\phi) = \frac{e\Delta}{h} \frac{2W}{L} \cos(\phi/2) \tanh^{-1}(\sin(\phi/2))$$ ## Interferometer technique (Urbana) C. English et al., PRB 94, 115435 (2016) ## Asymmetric SQUID technique (Delft) Nanda et al., arXiv:1612.06895v2 # S-TI-S Josephson junction networks: a platform for exploring and exploiting topological states and Majorana fermions ## Agenda - 1. Topological insulators and Majorana fermions --- very little, but enough - 2. Why junctions are better than nanowires (for Sergey) - 3. The model --- what we think should happen - 4. The experimental picture --- what we see - 5. Mysteries --- what we still need to understand - 6. Functionalization Imaging --- finding Majorana Braiding Parity readout Quantum processors ## I am not going to talk about ... #### History of Majorana fermions Ettore Majorana A particle that is its own anti-particle Manifestation in condensed matter Half of a fermion at zero-energy ## Topology Materials defined by topological order of band structure rather than symmetry --- support Majorana fermions e.g. topological insulators ## Classifications of topological states (Ryu et al.) | | TABLE - "Ten Fold Way" ['CARTAN Classes'] | | | | | | | |--------------------------|---|----|----------|--|--|---------------------------------|---| | Name
(Cartan) | τ | c | S=
TC | Time evolution operator $\mathcal{U}(t) = \exp\{it\mathcal{H}\}$ | Anderson Localization
NLSM Manifold G/H
[compact (fermionic) sector] | SU(2)
spin
con-
served | Some Examples of Systems | | A
(unitary) | 0 | 0 | 0 | U(N) | U(2n)/U(n)xU(n) | yes/
no | IQHE
Anderson | | Al
(orthogonal) | +1 | 0 | 0 | U(N)/O(N) | Sp(4n) /Sp(2n)xSp(2n) | yes | Anderson | | AII
(symplectic) | -1 | 0 | 0 | U(2N)/Sp(2N) | SO(2n)/SO(n)xSO(n) | no | Quantum spin Hall
Z2Top.lns.
Anderson(spinorbit | | AIII
(chiral unitary) | 0 | 0 | 1 | U(N+M)/U(N)xU(M) | U(n) | yes/
no | Random Flux
Gade
SC | | BDI
(chiral orth.) | +1 | +1 | 1 | SO(N+M)/SO(N)xSO(M) | U(2n)/Sp(2n) | yes/
no | Bipartite Hopping
Gade | | CII
(chiral sympl.) | -1 | -1 | 1 | Sp(2N+2M) /Sp(2N)xSp(2M) | U(n)/O(n) | no | Bipartite Hopping
Gade | | D | 0 | +1 | 0 | O(N) | O(2n)/U(2n) | no | (px+ipy)-wave 2D
SC w/spin-orbit
TOHE | | С | 0 | -1 | 0 | Sp(2N) | Sp(2n)/U(2n) | yes | Singlet SC +mag.fiel
(d+id)-wave
SQHE | | DIII | -1 | +1 | 1 | O(2N)/U(2N) | O(n) | no | SC w/ spin-orbit
He-3 B | | CI | +1 | -1 | 1 | Sp(2N)/U(2N) | Sp(2n) | yes | Singlet SC | ## Topologically-protected quantum computing via braiding Encode information in the "parity" of non-local quantum states to avoid decoherence in quantum computing Exploit non-Abelian statistics of Majorana fermions ## Topological systems that could support Majorana fermions #### Intrinsic chiral materials: - 5/2-quantum Hall state - Topological superconductors, e.g. Sr₂RuO₄, Nb_xBi₂Se_{3,...} ## Engineer new chiral materials via proximity-coupling: - spin-orbit semiconductor nanowires + superconductor + magnetic field - spin-orbit semiconductor (InAs) + superconductor + ferromagnet - non-centrosymmetric superconductor + ferromagnet - chains of magnetic atoms on a superconductor - (your idea here) - ★ topological insulator + superconductor ## Detecting Majorana fermions --- a grand challenge Many proposed schemes testing various properties of MF states: spectroscopy --- probe zero energy states via quasiparticle tunneling noise signatures --- 5/2-quantum Hall states vortex interference --- Aharonov-Casher effect (Vishveshwara, etc.) Kitaev (2000) + others Tunneling by a split fermion rather than by Cooper pairs Josephson interferometry --- critical current vs. magnetic field #### Most attention to date --- semiconductor nanowires #### Advantages: - System can be tuned into the topological state with a magnetic field - Majorana fermions are stabilized at the ends of the wire - Parity lifetimes are expected to be long (few other states around) - Can probe zero energy states via quasiparticle tunneling spectroscopy ## Disadvantages: - Need a large oriented magnetic field to induce the topological state - Majorana fermions are stabilized at the ends of the wire - Challenging to manipulate/braid Majorana fermions ## Why lateral S-TI-S junctions? #### Not the favorite system of most because of the complexity: - 2D width (multiple channels) - Multiple surfaces (top, edges, bottom) - Conducting bulk states and trivial surface states in the TI #### Advantages: - Supports topological excitations without a strong magnetic field. Allows phase-sensitive techniques, e.g. Josephson interferometry - Allows access to barrier for probes and imaging - Expandable into networks - Enables multilple modes of operation to move and control Majorana fermions by <u>phase</u>, <u>current</u>, or <u>voltage</u> - Schemes proposed to braid and perform logical operations. #### Trade-off stability for functionalization! ## Key component: S-TI-S lateral Josephson junction S-I-S insulator barrier Correlated tunneling of electrons "Cooper-pair tunneling" S-N-S normal metal barrier Coherent electron-hole pair transport with Andreev reflection at SC interface "Andreev bound states" S-TI-S topological insulator barrier Coherent electron-hole pair transport via topological surface states "Andreev bound states" + "Majorana bound states" (zero-energy) 3D topological insulator Insulating bulk (nearly) High-mobility surface states protected by topology Spin-momentum locking prevents backscattering ## Andreev Bound States (ABSs) in S-TI-S Josephson junctions L. Fu and C. Kane, Phys. Rev. Lett. 100, 096407 (2008) Zero-energy Majorana Bound states for $\phi = \pi$ ABS energy levels $$E_{\pm}(q,\phi) = \pm \sqrt{\upsilon^2 q^2 + \Delta^2 \cos^2(\phi/2)}$$ $$E_{\pm}(\phi) = \pm \Delta \cos(\phi/2)$$ for q=0 Supercurrent contribution $$I_{\pm}(\varphi) = \frac{2e}{\hbar} \frac{\partial E_{\pm}}{\partial \varphi} = \mp \left(\frac{e\Delta_0}{2\hbar}\right) \frac{\sin \varphi}{\sqrt{\frac{v^2 q^2}{\Delta_0^2} + \cos^2\left(\frac{\varphi}{2}\right)}}$$ Low-energy ABS: $I \propto \dot{\phi}$ for q small, high transparency (skewed CPR) Majorana states: $I \propto \sin\frac{\phi}{2}$ for q=0 (4 π -periodic CPR) ## Current-controlled devices: lateral junctions in a magnetic field Perpendicular magnetic field induces a phase gradient and circulating currents Majorana fermions enter junction attached to Josephson vortices --- located where the phase difference is an odd multiple of π Zero current: MFs enter symmetrically At critical current: MFs enter alternatively ## Where is the other Majorana? #### Symmetric configuration: MFs on top and bottom surface connected by a vortex, series of nanowires in the barrier supercurrent on both surfaces # Asymmetric configuration: lateral junction MFs on localized on top surface, delocalized on bottom surface supercurrent only on top surface ## Extreme asymmetric configuration: Consider only MFs on top surface, partners are fully delocalized ## Detecting localized Majorana fermions via tunneling spectroscopy Can scan an STM to map out the location of Majorana fermions (experiments underway with Michigan State -Tessmer) Or move Majorana fermions bound to Josephson vortices under fixed tunnel junctions ## S-TI-S arrays for STM and SSM imaging ## AFM images of Nb hexagons on Bi₂Se₃ This will be a suitable platform for multiple braiding operations by controlling magnetic fields and island phases ## Voltage-controlled devices: moving Majorana fermions $$\frac{d\phi}{dt} = \frac{2eV}{\hbar}$$ Phase winds according to the Josephson relation: $$v = \frac{V}{Bd}$$ Majorana fermions move laterally through junction at speed: For V = 1 μ V and d = 100 nm and B = 10 mT, v = 1 km/s! Provides way to move Majorana fermions fast along lateral junctions Can manipulate MFs in multiply-connected junction networks for braiding #### Majorana Fermion Surface Code for Universal Quantum Computation Sagar Vijay, Timothy H. Hsieh, and Liang Fu Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 8 April 2015; published 10 December 2015) We introduce an exactly solvable model of interacting Majorana fermions realizing Z_2 topological order with a Z_2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physical ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations. ### Braid MFs by phase-control of islands Braiding operations CNOT gate ## Experiments: completed and in progress ## Transport in Nb-Bi₂Se₃-Nb junctions Phase transition in the location of the topological surface state ## Josephson interferometry in Nb-Bi₂Se₃-Nb junctions and SQUIDs - Node-lifting of the magnetic field modulation patterns - Non-sinusoidal components in the current-phase relation - Evidence for 4π -periodicity that could arise from Majorana states #### Functional steps - Schemes for braiding - Schemes for reading the parity ## UIUC research team and collaborators ## **Experiments** Dale Van Harlingen UIUC Erik Huemiller Guang Yue Postdoc Can Gilbert Arias Grad student **Aaron** Grad student Cihan Alexey Vlad Tessmer Stuart UIUC Michigan State Martin Inprentus Intel IBM Research Missouri S&T Accio Energy U.of Würzburg #### Samples Seongshik Oh Rutgers Yew San Hor Missouri S&T #### Theory Pouyan Ghaemi **CCNY** **Smitha Vishveshwara** UIUC **Taylor** Hughes UIUC Suraj Hedge UIUC ## Bi₂Se₃ Materials Characteristics Bi₂Se₃ film MBE-grown on Al₂O₃ Bulk is insulating - conductance is dominated by two surface channels: - 1. Trivial 2DEG (2-3 quintuple layers) - 2. Topological surface state ## This suggests that: - 1. Most of the supercurrent is carried by the top surface. - 2. Bulk conductance does not play a large role in the supercurrent properties. ## Nb/Bi₂Se₃/Nb Josephson Junctions - E-beam lithogra, W,→ - Ion milling - Evaporation and sputtering ## Typical Dimensions: Length = 100-300nm Width = $300nm-1\mu m$ Top gate dielectric ~ 35-40nm (ALD Al_2O_3/HfO_2) ## Supercurrents in S-TI-S junctions ## **Supercurrents** ## Theoretical Model - topological phase transition ## Low gate voltage: - Fermi energy in conductance band - Topological surface state buried ## High (negative) voltage: - Fermi energy in the band gap - Topological surface state on surface ## Numerical Solutions --- low-energy Andreev Bound States As μ decreases, the ABS move from the interface between the 2DEG and the insulating region to the free surface \rightarrow topological phase transition These states carry the majority of the supercurrent which drops because: - 1. The transparency is higher when buried 2DEG protects the states - 2. The transport becomes most diffusive on the surface due to scattering - 3. The 2DEG contribution to the supercurrent turns off when depleted ## Physical Picture Topological surface state winds through 2DEG at intermediate gating dynamically-meandering topological surface state Most likely these arise from charge fluctuations in the gate than change the local carrier density and induce the phase transition Complex system: junction transport will be affected by local switching dynamics, 2D percolation physics, and interactions/avalanches ## Supercurrent diffraction patterns - 1st minimum does not go to zero - 2nd minimum does go to zero ## Diffraction pattern vs. gating - Central peak drops at Dirac point - Side lobe is nearly unchanged - Lifting of first node persists ## Diffraction pattern --- higher level nodes Question always arises whether higher-order nodes are lifted --- difficult to test because the critical currents are very small In this junction, 1^{st} and 3^{rd} nodes are lifted, 2^{nd} and 4^{th} nodes are hard but extra bump at higher fields indictiong some junction inhomogeneity ## Simulations --- Hybrid Current Phase Relation CPR: $$I(\phi, V_g) = Ic_1 \sin(\phi) + Ic_2(V_g) \sin(\phi/2)$$ 1st minimum lifted 2nd exactly nulled Reproduces some key features However, this assumes a uniform sin($\phi/2$)-component with should not be the case for Majorana fermions --- only stable when $\phi \sim \pi$ ## Model --- Current-Phase Relation for S-TI-S junction Majorana fermions nucleate when/where the phase difference is π $$I_c(\phi) = (1 - \alpha)\sin(\phi) + \alpha\sin(\frac{\phi}{2})$$ Width of the Majorana region will depend on details of the sample Consider the junction to break up into 1D wires with a $sin(\phi/2)$ -component ## Diffraction patterns for S-TI-S junction Lifting of odd nodes Additional structure when Majorana fermions enter the junction --- a signature of a localized $sin(\phi/2)$ component in the CPR ## Josephson vortex + Majorana Fermion entry features - Model predicts an increase in the equilibrium supercurrent when the first vortex/MF enters the junction - We observe these features in the diffraction pattern - Important feature --- indicates that MF modes are localized and when they are in the junction ## Current carried by Cooper pairs vs Majorana fermions #### S-TI-S dc SQUID Motivation: can use SQUID loop to adjust relative phase of the junctions and control the Majorana fermions $\text{Bi}_2\text{Se}_3\text{: }19~\text{nm}$ thick , 4 μm long, 300 nm wide exfoliated piece Junctions: length 300 nm, width 300 nm # SQUID oscillations --- gate dependence --- envelopes Envelopes exhibit same behavior as single junction diffraction: first node stays high, second vanishes SQUID oscillations also do not go to zero as would be expected for β <<1 and a symmetric SQUID $$\beta = 2\pi LI_c/\Phi_0$$ # SQUID oscillations --- gate dependence Modulation depth is gate-dependent: peaks drop; nodes stay constant #### Node-lifting in Josephson junctions and SQUIDs #### Josephson junctions: - Inhomogeneous current distribution --- usually lifts all nodes - $sin(\phi/2)$ -component in the current-phase relation - Edge currents due to MF hybridization (Potter-Fu model) #### dc SQUIDs: • $sin(\phi/2)$ -component in the current-phase relation • Finite inductance of SQUID loop $\beta = 2\pi LI_c/\Phi_0$ • Asymmetry in the junction critical currents $\alpha = (Ic_1-Ic_2)/(Ic_1+Ic_2)$ • Asymmetry in the SQUID loop inductance $\eta = (L_1-L_2)/(L_1+L_2)$ • Skewness in the current-phase relation* $s = (2\phi_{\text{max}}/\pi) - 1$ * Skewness does NOT lift nodes in single junctions $$Ic_{min}/Ic_{max} \sim \beta \sim \alpha \sim \eta \sim s$$ ## Simulations of skewed CPR on dc SQUID Skewness arises from transport through high transparency quantized Andreev bound states $$I_c = \frac{e\Delta}{h} \sum_{i=0}^{\infty} \frac{T_n \sin(\phi)}{\sqrt{1 - T_n \sin^2(\phi/2)}}$$ #### Node-lifting vs. skewness - SQUID node requires I (ϕ) = -I(ϕ + π) \Rightarrow lifted by skewness and 4π -periodicity - Single junction node requires I (ϕ) = I(ϕ +2 π) \Rightarrow lifted only by 4 π -periodicity #### Why can we see the $sin(\phi/2)$ -component in the CPR? - 1. Cancellation of 2π -periodic component by destructive interference at nodes reduces the background \rightarrow effectively a series of 1D channels with a $\sin(\phi/2)$ CPR - 2. Dynamical measurement at finite voltage so phase evolves fast enough to avoid parity transitions that suppress the 4π -periodic component. Typical Josephson frequency ~ GHz. Slow measurements of the CPR should not see this # CPR Measurements via Interferometer technique No 4π -periodicity --- expected for a static measurements Very small skewness but need to measure when gated #### Frequency-dependent CPR Measurements ## Asymmetric de SQUID technique - Junction embedded in a dc SQUID - Measure critical current vs. flux Modulation shows skewness expected from high transparency states, but no signatures of $sin(\phi/2) \rightarrow not$ there? suppressed by qp poisoning? #### Is the $sin(\phi/2)$ -component we see reasonable? - estimated current from a single Majorana state is 10nA-100nA - in most of our samples, the node-lifting is 3nA-30nA but some are larger - what we find to be constant is the <u>fraction</u> of node-lifting $\sim 10-20\%$ of Ic_{max} - we expect any states, even gapped ones, for which Zener tunneling can preserve the parity to exhibit the 4π -periodicity Expect a range of phase values, independent of the critical current This is an interesting observation but perhaps not particularly good --- some states that lift the nodes may <u>not</u> be protected Majorana state #### Moving on --- next steps Status of experiments: Intriguing evidence for Majorana modes → most features we expect are observed Who is convinced? **NOBODY** (as in all Majorana systems to date) What do we do next? BRAID Need to demonstrate braiding --- parity changes associated with MF exchange AND their non-Abelian statistics - 1. Need to exchange MFs - 2. Need to measure the parity - 3. Need to measure parity lifetimes to determine how fast we need to perform braiding operations - 4. Then we build a quantum computer #### Ways to braid #### Exchange braiding --- interchange MFs, change parity Topologically-protected --- no errors #### Hybridization braiding --- interact MFs, induce parity change Not fully protected --- must control strength and time of coupling Coupling depends of overlap of wavefunctions --- exponential dependence. ## Exchange braiding in S-TI-S trijunctions via voltage pulses Use voltage pulses to drive Josephson vortices/MFs - Utilize RSFQ (Rapid Single Flux Quanta) pulses (V*∆t = 1 Ф₀) - Apply sequences of pulses to junctions - Exchange vortices Can braid rapidly but voltage pulses can generate quasiparticles that enhance parity switches \rightarrow "quasiparticle poisoning" # Exchange braiding in S-TI-S trijunctions via phase shifts - Apply current pulses to junction arms shorted by inductors - Response is non-linear due to supercurrent in the junction - Allows continuous control of phases with no dissipation --any phase configuration is accessible Can braid rapidly but no voltages are generated, preventing quasiparticle poisoning ## Hybridization braiding: controlling the spacing of Josephson vortices/MFs - Current in loop creates a local field pulse - Vortices move closer together - Creates hybridization --- time-dependent #### Hybridization braiding: measuring the effects of vortex motion # Imaging via Scanning SQUID Microscopy (SSM) Vortices in MoGe films by SSM #### Detection via diffraction patterns Significant changes in the diffraction patterns due to manipulation of vortices # Braiding by hybridization Braiding can also be effected by changing the spacing of Majorana fermions to induce phase shifts and subsequently reading out their parity #### Ways to measure the parity Many schemes have been proposed: couple topological device to a quantum dot observe parity -dependent conductance changes in a "single-electron transistor" - incorporate topological device in a microwave cavity resonator "transmon" observe splitting of energy levels corresponding to parity states - measure critical current switching distribution sensitive to the sign of the $sin(\phi/2)$ -component which encodes the parity measure transition from zero voltage to finite voltage state $$I_{c+} \sim \sin(\phi) + \gamma \sin(\phi/2)$$ $I_{c-} \sim \sin(\phi) - \gamma \sin(\phi/2)$ $$I_{c-} \sim \sin(\phi) - \gamma \sin(\phi/2)$$ Expect to see switching with a bimodal distribution --- splitting would be proportional to the magnitude of the $\sin(2\phi)$ component ## Critical current -- escape phase particle from the potential well Thermal activation (over barrier) Macroscopic Quantum Tunneling (though barrier) S-I-S junction $I(\phi) = I_c \sin(\phi)$ single barrier heights $\sim I_c$ S-TI-S junction $I(\phi) = I_{c1} \sin(\phi) + I_{c2} \sin(\phi/2)$ Two barrier heights ~ $I_{c1} \pm I_{c2}$ # Critical current switching distributions $0.28 \Phi_{0}$ Critical Current (arbitrary unit) 0.2 $0.55 \Phi_{0}$ - Low-field distributions exhibit conventional single peak form characteristic of escape from washboard potential wells - Above $\sim 0.28\Phi_0$, we observe a broadened distribution --- bimodal but with intermediate states - Above ~0.55 Φ_0 , distribution narrows when junction is no longer hysteretic #### Modeling the switching distributions - Low-field distributions fit MQT form --- no temperature dependence observed (expected for low-capacitance lateral junctions) - Intermediate region fits a bimodal critical current with splitting comparable to the node-lifting --- attribute this to $sin(\phi/2)$ contributions from MFs with different parity - Switching between distributions arises from parity transitions --- estimate parity transition rate to be ~ 20KHz → parity readout but with low fidelity First actual parity measurements made on a Majorana fermion pair by us, and maybe by anyone. ### More critical current switching distributions In other samples, the splitting is so small that it only shows up as a broadened single peak --- measure distribution and the standard deviation Spike at onset features Drop in non-hysteretic region ## Effect of parity transitions on diffraction patterns - The first node lifting is usually seen on our devices - The second node sometime also lifts due to non-uniform parity of the MBS ## Architecture for an S-TI-S quantum processor Basic building block: 7 hexagonal islands 12 junctions 6 trijunction braiding sites Phase control for exchange braiding Field coils for hybridization Transmon readout of MF parity at 6 sites E. Ginossar and E. Grosfeld Nature Communications **5**, 4772 (2014) #### Summary: the TRUTH about Majorana fermions in S-TI-S junctions Theoretical models make specific predictions about Majorana fermions in S-TI-S Josephson junction networks. Our approach has been to: - (1) Test those predictions as rigorously as possible via transport and Josephson experiments - ✓ Coherent supercurrents on the top surfaces - ✓ Odd node lifting - ✓ MF entry features - √ Skewness in CPR - Evidence for parity fluctuations at higher order nodes Critical current distribution splitting in some junctions; broadening in all - × Node-lifting seems too large in some junction - × Splitting seems too small in some samples - \times No observation of 4π -periodcity in direct CPR measurements - (2) Move forward on schemes to braid and readout parity that can provide the only definitive proof of MFs with non-Abelian statistics and enable applications - (3) Looking for talented postdocs interested in research in quantum information science